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Abstract 

The mitigation of climate change is a global priority. The United Nations Framework Convention on 

Climate Change Paris Agreement sets an ambitious goal of limiting global warming well below two 

degrees Celsius, and ideally at 1.5 degrees Celsius, by the end of the 21st Century. While recent 

publications have highlighted the important role that terrestrial forests, wetland forests, marine 

ecosystems (such as mangroves and seagrass meadows) and lowland grasslands play in global climate 

mitigation efforts, there has been few studies quantifying how mountain grasslands and shrublands 

might contribute in this regard. These fragile high-altitude (mostly above treeline) ecosystems cover 

around 6% (9.38 million km2) of Earth’s landmass, provide habitat for rare flora and fauna species 

while supplying water, food, fibre and economic opportunities to billions of people, many of whom 

are very poor. Like forests and marine ecosystems, mountain grasslands and shrublands are under 

threat from multiple anthropogenic stressors. Without a global assessment and understanding of the 

extent and value of carbon stocks in mountain grasslands and shrublands these ecosystems cannot be 

effectively integrated into international carbon budgets and climate policy. This thesis therefore helps 

address this issue by providing both an estimate of C stored in mountain grasslands and shrublands 

areas, and its relative economic value in climate regulation terms. This thesis also makes several 

recommendations for how this C pool might be factored into international climate policy frameworks 

and budgets, and how climate finance might be used to address the various drivers of degradation in 

mountains grassland and shrubland ecosystems around the world.   

Using spatial analysis, this thesis commences by estimating there to be between 60.5 Pg C and 82.8 

Pg of C contained within the biomass and soils of the world’s mountain grasslands and shrublands in 

the year 2000. This is a significant amount when considering that global C pools in tropical Savannas 

and grasslands, temperate forests and tropical peatlands are estimated to be 326–330 Pg C, 159–292 

Pg C and 88.6 Pg C respectively. This thesis found that mountain grasslands and shrublands C stocks 

are most likely not reliably accounted for in international carbon budgets. Building on this initial 

estimate, this thesis then models the exchange of CO2 between mountain grasslands and shrublands 

and the atmosphere, clarifying both in biochemical and economic terms how land use and land use 

change impacts mountain grassland and shrubland C stocks. Analysis presented in this thesis 

estimates the value of CO2 sequestered by mountain grasslands and shrublands to be between 

US$1.24 billion and US$11.8 billion per annum. It is also demonstrated that if land use was managed 

more sustainably mountain grasslands and shrublands could sequester up to an additional 8.4 Mt CO2 

per annum while contributing US$0.093 billion - US$0.89 billion annually in added value to society.  
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This thesis then investigates how climate finance might be used to support priority natural resource 

management actions in mountain grassland and shrubland ecosystems. The understandings and 

perspectives of experts on the risks and opportunities of using climate change in this respect, and 

what methodologies, institutional arrangements and enabling factors required, is presented. A top-

down conceptual policy framework is then proposed to assist policy makers in developing key 

‘enabling factors’ with the view of extending the eligibility of carbon markets and climate finance to 

natural resource management activities undertaken in mountain grasslands and shrublands in the same 

way that has been afforded to other ecosystems.  

The results presented in this thesis have several implications for policy making. First, the results 

provide a sound first-step in developing global environmental accounts for C stored in mountain 

grassland and shrubland ecosystems. Moreover, these results provide a baseline estimate and 

methodology with which to monitor and manage these C stocks. This baseline has direct application 

for improving the precision of mountain grasslands and shrubland carbon accounting modalities 

issued by the Intergovernmental Panel on Climate Change, United Nations Framework Convention 

on Climate Change and carbon offset measurement methodologies e.g. the Verified Carbon Standard. 

Any improvement in this respect will also improve the reliability of the science, aiding progress 

towards the targets set by the Paris Agreement. Second, from an accounting perspective, this thesis 

could potentially provide input data into other global studies which have excluded estimates for C in 

alpine areas which until now has not been available. Third, when combined, the estimates for C 

stocks, CO2 sequestration and economic value provided herein justify further investigation of how 

carbon markets and climate finance might be used specifically to address the factors influencing 

degradation in mountain grasslands and shrublands around the world.  
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Chapter 1. Introduction 

1.0 Introduction  

Mountains are one of the great geological landforms of our planet, and are of critical importance to 

humanity. In a global context, mountains cover approximately 24 percent of Earth’s landmass (Kapos 

et al, 2000), are home to around 26 percent of the world’s population (Meybeck et al, 2001) and are 

the economic backbone for an estimated 40 percent of people, many of whom are very poor (Ariza et 

al, 2013; Beniston, 2003). Moreover, mountains, which are often referred to as the ‘water towers of 

the world’, provide clean water to more than half of the world’s population. Mountains also shelter 

nearly 50 percent of Earth’s biodiversity ‘hot spots’ and afford important ecosystem-derived goods 

(e.g. food, fibre and medicines) and services (e.g. hazard reduction, recreation cultural and renewable 

energy) to people living both within and outside mountain areas (Ballabio et al, 2012; Beniston, 2003; 

Blyth et al, 2003; Costanza et al, 1997; Rashid et al, 2005; TEEB Synthesis, 2010; Singh, 2011). 

Importantly, six of the 20 plant species that supply more than three quarters of the world food supply 

originate in mountains (Panos Institute, 2002). Mountains also have a profound biophysical influence 

on regional weather patterns such as the South Asian summer monsoon which impacts more than a 

billion people (Turner and Annamalai, 2012). The significant contributions made by mountain 

regions is recognised by numerous internationally significant accords, and in particular, Agenda 21 

which was adopted at the first UN Conference on Environment and Development (UNCED) in 1992, 

and in The Future We Want publication adopted 20 years later at the UNCED RIO+20 conference.   

“Mountains are an important source of water, energy and biological diversity. 

Furthermore, they are a source of such key resources as minerals, forest products and 

agricultural products and of recreation. As a major ecosystem representing the complex 

and interrelated ecology of our planet, mountain environments are essential to the survival 

of the global ecosystem. Mountain ecosystems are, however, rapidly changing. They are 

susceptible to accelerated soil erosion, landslides and rapid loss of habitat and genetic 

diversity. On the human side, there is widespread poverty among mountain inhabitants 

and loss of indigenous knowledge. As a result, most global mountain areas are 

experiencing environmental degradation. Hence, the proper management of mountain 

resources and socio-economic development of the people deserves immediate action”. 

Agenda 21, Section 13.1 (UNCED, 1992) 
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Despite their environmental and socioeconomic significance, many mountain ecosystems around the 

world are being degraded due to unsustainable land use and land use change (LULUCF) (Körner et 

al, 2005; Ward et al, 2015). According to Beniston (2003) and Jansky (2002) the underlying drivers 

of environmental degradation in mountains are globalisation, population and economic growth. Like 

for low-land economies, the rapid industrialisation of the 20th century has driven a rapid boom in 

mountain-based mining, tourism, hydro energy provision, forestry and agricultural intensification, all 

of which have had a direct and negative impact on fragile mountain ecosystems (Bradley et al, 2012; 

European Commission 2008; Grabherr, 1994; Rammig et al 2010; Schroter et al, 2005;). For many 

developing countries, this deterioration in the natural resource base has also increased poverty, 

unemployment, poor health, loss of culture, conflict and outmigration in mountain regions (Hurni, 

1999; Jansky et al, 2002; Körner et al, 2005). Indirectly, climate change, which has been observed 

and forecast to drive greater temperature increases in mountains and at high latitudes, is serving to 

magnify this degradation by weakening the adaptive capacity and resilience of fragile mountain 

ecosystems (Woodwell, 2004).  

Like for other ecosystems, the loss and damage caused to mountain ecosystems presents an economic 

cost to society which will be born mostly by future generations in the form of climate change impacts, 

a degraded natural resource base and other environmental and socioeconomic impacts (Hurni, 1999). 

From an ecological economics perspective, environmental degradation is considered an externality 

of intergenerational concern given it severely impacts ecosystem services which are of central 

importance to human health, livelihood, survival and well-being (Costanza et al, 1997; Millennium 

Ecosystem Assessment, 2005; TEEB Foundations, 2010; TEEB Synthesis, 2010).  

As noted by Agenda 21, Our Future We Want and in much of the literature, strategic sustainable 

mountain development (SMD) policies and targeted natural resource management (NRM) action is 

needed urgently to address this loss and damage (Hurni, 1999; Price, 2007; UNCED, 1992). Of all 

mountain ecosystems this is particularly true for mountain grasslands and shrublands (MGS). MGS 

can be identified as biogeographically-derived ecoregions that exist at higher altitudes (typically but 

not always above treeline) and include Northern Andean Páramo, East African Montane Moorlands, 

Central Range Subalpine Grasslands, European Calcareous Grasslands, Sayan Alpine Meadows and 

Tundra, and Central Tibetan Plateau Alpine Steppe (Olson et al, 2001; WWF, 2000). To date, the 

bulk of mountain-focused academic literature and policy analysis has focused on the NRM of 

mountain forests rather than MGS. Perhaps this is due to difficulties in accessing these often remote, 

high-altitude and sparsely populated areas. Or, perhaps it is due to the lack of general knowledge, 
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empirical data and/or an understanding of the economic value that MGS bring to society (Gurung et 

al, 2012; Körner et al, 2005). Though not the only aspect, understanding the relative and absolute 

value of ecosystem services is important if awareness for their relative importance to human 

wellbeing is to be acknowledged (Costanza et al, 2014).  

This knowledge is also critical given that securing NRM funding remains a serious challenge for 

governments around the world, who are facing a multitude of NRM issues (WWF-MPO, 2003), and 

where mountains, which are often remotely located and thus ‘out-of-sight’ and ‘out-of-mind’, often 

seem to be at the end of the funding queue (Ward et al, 2015). In our public finance constrained 

world, many experts, development organisations and governments advocate the use of market-based 

instruments (MBIs) and unconventional funding mechanisms routed in ecological economic 

principles and the so-called ‘green economy’ in order to help solve mountain-based NRM issues 

(ICIMOD 2012; Richardson, 2013; Wentworth Group of Concerned Scientists, 2015; Worboys and 

Good, 2011). These mechanisms include carbon markets, green bonds, payments for ecosystem 

services (PES), impact investing and direct private equity investment (amongst other existing and 

emerging mechanisms). While such mechanisms offer part of the solution to addressing socio-

ecological loss and damage, inherent scarcity means trade-offs about which ecosystems to support 

(and to what extent) will need to be made at some point in the decision making process (Leader-

Williams et al, 2010). Making value judgements in this respect is also often unavoidable for 

government. Incorporating a transparent (though limited) valuation for ecosystems in this process is 

helpful if their benefits are to be considered in relative terms (Costanza et al, 2014). Knowing the 

value can also assist in the effective management of ecosystem services, particularly when the use of 

economic incentives are involved (Farley and Costanza, 2010).    

A wealth of research into the economic value of ecosystem services has been undertaken since the 

early 1970s (Daily, 1997; de Groot, 1987; Ehrlich and Ehrlich, 1981; Ehrlich and Mooney, 1983; 

Odum, 1971; Westman, 1977). Recently, Costanza et al (2014) updated their original landmark study 

published in Nature (Costanza et al, 1997), putting the annual economic value of the world’s natural 

capital and ecosystem services at US$125 trillion. This global study estimated the non-market value 

for many ecosystems, based on the regulating, provisioning, habitat and cultural services they provide 

(TEEB Synthesis, 2010). Thousands of other studies, too numerous to mention here, have built on 

the concepts proposed by Costanza’s original 1997 paper, increasing both the number and resolution 

of economic estimates for many ecosystem services around the world (Braat and de Groot, 2012). 

Despite this surge of research there are very few studies enquiring as to the economic value for the 
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ecosystems services derived from MGS, let alone a global estimate that would be particularly useful 

to policy makers at the national, international and regional levels (Ward et al 2015). Without this 

value, the contribution that MGS make to humanity cannot be considered fairly in the decision 

making process. 

Establishing a reliable global estimate for the economic value of all ecosystem services provided by 

MGS is likely to be a challenging task given the lack of integrated systems research and the numerous 

data gaps that exist for mountains (Gurung et al, 2010; Jansky, 2002; TEEB Foundations, 2010; UN 

FAO 2015; Ward et al 2015). Moreover, these gaps are particularly apparent at the global scale 

(Debarbieux and Price, 2008). With this in mind, this thesis advocates a more pragmatic approach by 

focusing on valuing those ecosystem services which are connected to established economic 

incentives, with the view of using them to address the NRM challenges discussed above. Given the 

global scale of this study, focus should also be put on ecosystem services that have a global impact. 

Climate regulation ecosystem services, that is the biosequestration of carbon dioxide (CO2) from the 

atmosphere into biomass and soils which serves to mitigate climate change, have been connected to 

carbon markets around the world for many years. Under the right conditions, climate finance 

incentives that encourage avoided deforestation, reforestation, and grassland and soil management, 

have supported global efforts to reduce GHG emissions and been proven to be co-effective in 

encouraging more sustainable NRM in both terrestrial and marine ecosystems (Thomas, 2013).  

An initial assessment of climate policy discourse suggests that it has largely failed to consider the 

specific and critical role that MGS ecosystems play in international carbon accounts and global 

climate mitigation. This is evidenced by the results of an extensive literature review of key areas 

(discussed in relevant chapters in this thesis) which found relatively few empirical local studies in 

MGS carbon stocks, and no high-level global studies. This thesis seeks to fill a number of key 

literature gaps by answering the research questions below.   

Research Question 1. What is the spatial distribution and significance of carbon stored in the 

world’s MGS? How is it accounted for in global carbon budgets and international carbon 

accounting frameworks? 

Research Question 2. To what extent is carbon globally exchanged between MGS and the 

atmosphere? How is this impacted by land use change? What is the economic value of these 

exchanges and as an ecological asset, when considering climate policy and broader sustainable 

perspectives? 
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Research Question 3. What are the stressors, NRM challenges and priorities related to carbon 

stocks in MGS? Why has climate finance not been utilized in this context? What is required to 

position these NRM activities eligible for carbon finance incentives, and in so doing, ensuring 

that MGS are more sustainably used and the aforementioned ecological economic value is 

maintained and/or improved? 

 

This thesis begins (Chapter 2) by way of a general literature review, summarising the biophysical, 

ecological, social and economic aspects of mountains so one can better appreciate the dynamics and 

limitations to carbon storage in an MGS context. It also outlines the benefits and challenges in valuing 

the climate regulating services provided by MGS, the connection with ecosystem service valuation, 

and also how climate finance can be used to address NRM issues and SMD objectives.   

Chapter 3 gives an overview of how the thesis methodology meets the overall research objective as-

a-whole, and summarises how the methodologies presented in each of the key results driven chapters 

(Chapters 4-6) meet the specific research questions of the thesis.  

Chapter 4 provides a spatially resolved estimate of C contained within the biomass and soils of the 

world’s MGS, as published in Global Environmental Change by Ward et al (2014). It also puts this 

amount into perspective by comparing C stores in other terrestrial and marine ecosystems. Chapter 4 

then proceeds to review existing empirical studies and United Nations Framework Convention on 

Climate Change (UNFCCC) national greenhouse accounts, to ascertain if this C is reliably accounted 

for in international carbon budgets. This estimate is the first to provide a global point of reference, 

useful in developing future research and in climate policy discussions. Chapter 4 concludes by briefly 

discussing how climate finance might be leveraged to support the sustainable management of these 

C stocks.  

Chapter 5 makes use of an Individual Based Model (IBM) and the best available spatial input data 

(including the outputs of Chapter 4) to understand how land use and land use change (LULUC) 

influences Net Primary Productivity (NPP) and soil loss in MGS ecosystems, and subsequently 

estimate CO2 fluxes between MGS and the atmosphere over a 15 year timeframe. It then translates 

this into an annual CO2 sequestration estimate for MGS, before putting a range of economic values 

on this important ecosystem service by quantifying the avoided climate change induced damage to 

society. This chapter is currently under review with Ecological Economics.     
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Chapter 6 considers the magnitude of C stored by MGS ecosystems, and postulates how climate 

finance may be used to address specific LULUC and NRM stressors, what barriers exist to the 

implementation of climate finance, and proposes a framework to address these barriers and ultimately 

enable climate finance to be used to protect and enhance MGS ecosystems like it has been used for 

other biological C stores. Moreover, this chapter also considers how SMD focused experts understand 

the aforementioned points and if opportunities with respect to using climate finance for MGS NRM 

might have been missed. This chapter was published in Climate Policy (Ward et al, 2015).   

Finally, Chapter 7 summarises how the thesis has met the overall research objective and specific 

research questions, highlights the strengths and limitations of the study, and points to how the results 

of the thesis may contribute to better awareness and knowledge in the aforementioned critical areas 

of ecosystem services and climate finance, serve to provoke future research, and ultimately how it 

may aid in the sustainable management of MGS ecosystems.       
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Chapter 2. Context 

2.0 Context  

2.1 Defining mountains 

For many, the term ‘mountain’ conjures up images of towering snow-covered rocky monoliths, such 

as those peaks found in the Himalayas. For others, ‘mountain’ means something quite different, for 

example a relatively small and gentle rise in land covered by dense tropical rainforest. The academic 

definition of ‘mountain’ has been the subject of long-running debate amongst researchers. In 1990, 

Gerrard (p.7) noted that “Numerous definitions of what constitutes a mountain have been proposed, 

but mountains are extremely diverse landforms and it has proved difficult to achieve consistency in 

description and analysis. Several criteria have been used, such as elevation, volume, relief, and 

steepness, as well as spacing and continuity”. The use of different criteria has caused wide-ranging 

estimates for global mountain coverage. For example, Fairbridge (1968) estimated that mountains, 

highlands and hill country cover 36 percent of the Earth’s landmass, while Louis (1975) proposed 

that mountains cover only 20 percent.  Messerli and Ives (1997) used altitude as the only criterion to 

estimate global coverage to be 48 percent. Kapos et al (2000) point out that, like previous studies, 

this last estimate is skewed as it takes into account large areas of mid-elevation plateau that are not 

really ‘mountainous’.  Though there is general consensus that altitude and steep slopes are key 

components of mountains (Ives et al, 1997), choosing an appropriate altitude threshold, such as one 

based on high-elevation and human physiological impact (i.e. oxygen availability), is often difficult 

because older and lower elevation mountain systems are consequently excluded (Kapos et al, 2000). 

The use of timberline and ecological variation is also problematic as both are impacted by altitude, 

latitude, the continent on which it’s located and mountain mass (Holtmeier, 1994; Tranquillini, 1979; 

Troll, 1973). 

More contemporary approaches have utilised GIS to achieve a more meaningful definition of what 

constitutes a ‘mountain’. A recent study by Kapos et al (2000) used a Digital Elevation Model (DEM) 

to determine seven mountain classes (Figure 1). Using this method, elevation thresholds were 

developed based on the altitude above which humans are affected by oxygen depletion, slope angle 

for middle elevation mountains, and local elevation range as a way of including low-elevation and 

older mountain ranges. In this thesis, we adopt Kapos et al’s (2000) definition of ‘mountain’.    
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Figure 1. Mountain classes according to elevation range, and % of global landmass 

Class Elevation range (m), slope (degrees) % of global 

land mass  

I >4,500m 1.2 

II 3,500 – 4,500m 1.8 

III 2,500 – 3,500m 4.7 

IV 1,500 – 2500m, Slope ≥ 2º 3.6 

V 1,000 – 1,499m, Slope ≥ 5º or local elevation range (7km radius) > 300m 4.2 

VI 300 – 1,000m and local elevation range (7 

kilometre radius) 300m outside 23ºN-19ºS 
8.8 

VII Isolated inner basins and plateaus less than 25 square kilometres in extent 

that are surrounded by mountains but do not themselves meet criteria 1–6 
N/A 

Adapted from: Kapos et al, 200l; Körner et al, 2005.   

        

2.2 Mountains of the world 

The Northern Hemisphere contains most of the world’s mountains, particularly in the sub-tropic 

latitudes, boreal and subpolar zones (Figure 2). These mountain systems include the Altai, Brookes, 

Rockies and Tien Shen ranges. Notably, Eurasia is the most mountainous landmass on earth, home 

to all of the world’s mountains above 7,000 metres, with the Himalayan range containing all peaks 

above 8,000m (Körner et al, 2005). The Eurasian landmass also features the extensive Tibet-Qingzian 

plateau (approx. 2,500,000 km2), the most densely populated area above 2,500m (National 

Geographic, 2006). South America has the second most extensive area of mountainous area, and 

features the Andes range which forms an impressive high-elevation backbone of rock, ice and MGS 

ecosystems running approximately 7,000 km down the length of the continent. This is followed by 

Antarctica and Greenland, though this is difficult to observe as much of the mountainous terrain 

remains covered by thick icecaps. Other relatively small, though important, mountain systems include 

the New Zealand Alps, the Great Dividing Range in Australia and the Great Rift Valley of Africa. 
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  Figure 2. Some of the major mountain areas of the world, and elevation ranges 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Adapted from: Kapos et al, 200l; Körner et al, 2005. 

   

  Figure 3. Photos of some of the world’s major mountain ranges  

 
The Karakoram, Pakistan 

Credit: Guilhem Vellut, 2016 

 
Great Rift Valley, Africa 

Credit: Msafiri, 2014 

 

 
The Great Dividing Range, Australia 

Credit: Buzzle, 2016 

 
The Andes, Chile 

Credit: Vagabondanna, 2016 
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2.3 Mountain grasslands and shrublands, the biophysical environment 

The biophysical environment encountered in mountainous areas is frequently described as ‘harsh’ 

and ‘unforgiving’, due to relative isolation, rapid and unpredictable changes in weather (wind, 

precipitation, temperature), relatively low temperatures (including snow and ice), low oxygen levels 

at higher elevations, extreme solar radiation, steep slopes and natural hazards (e.g. rock-fall and 

avalanches), dry conditions and shallow erosion-prone soils making agricultural production labour-

intensive and often marginal (Jansky et al, 2002; Körner et al, 2005). As will be discussed in later 

chapters, these factors are critical to the objective of this study.   

Due to their high elevation and vertical profile, mountains can also change air flow and influence 

local and regional weather. For example, the Himalayas are a key driver of India’s climate, sheltering 

it from cold northern winds and also influencing the annual South Asian monsoon (Turner and 

Annamalai, 2012).              

Mountain environments encompass four distinctive altitudinal belts (Figure 4). At the highest 

altitudes exist the ‘nival belt’, a zone that is often referred to as the ‘cryosphere’ and which stores 

enormous amounts of water as snow and ice (Turner and Annamalai, 2012). These unique ‘water 

batteries’ release fresh water every year into many of the world’s great rivers, sustaining billions of 

people (Barnett et al, 2005). Lower down, the ‘alpine belt’ incorporates the zone that ranges from the 

tree-line to the seasonal snowline, where vegetation cover is below 20 percent and where trees fail to 

grow. The ‘subalpine belt’ is the zone between the upper timberline (where trees form a closed canopy 

and where height is 3m or more) and the start of the alpine zone. The ‘montane’ altitudinal belt 

extends from the upper timberline to the lower mountain limit and includes both trees and isolated 

pockets of grassland and shrubland ecosystems (Grabherr et al, 2003; Körner et al, 2003).  

For the purposes of this thesis, ‘trees’ are defined as “as an upright woody plant with a dominant 

above-ground stem that reaches a height of at least 3m” (Körner 1998, p.445). MGS can be considered 

as plants that do not meet this criteria. While prevalent in the treeless alpine, MGS can also form tight 

assemblages around the stunted trees of the subalpine transitional zone and below within the forests 

and woodlands of the montane altitudinal belt due to a number of localised natural (e.g. ‘frost 

hollows’) and anthropogenic factors e.g. burning to clear land for agriculture (Körner et al, 2005). 
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Source: Körner, 2003. 

Though the treeline is influenced by a number of factors (e.g. root zone temperature, radiation, 

moisture availability) it remains fairly consistent worldwide, though may not be visible on many 

mountains where forests have been converted to cropland or pasture, for example. For this reason, 

the montane belt may also include grassland and shrubland ecosystems which are thus subject to the 

relative biophysical factors described above (Körner et al, 2005). In this thesis, understanding the 

characteristics of the treeline is important given that most of the world’s MGS are located above it.   

While mountains feature a dynamic biophysical environment at the local and regional level, it is 

important to note the changes taking place at the global level. Mountains have already experienced 

three times more warming than the global average, with projections that temperatures are likely to 

increase dramatically by the end of the century, effecting hydrological and geomorphic processes, 

with negative flow-on impacts for society and the economy in both the highlands and lowlands 

(Benitson, 2002; Christiansen et al, 2007). These projections are however coarse and caution should 

be taken when interpreting the results as few General Circulation Models (GCMs) and Regional 

Climate Models (RCMs) have the fine resolution required to adequately simulate the topography 

found in mountain areas (Christiansen et al, 2007). Though many uncertainties exist, climate change 

is expected to cause an altitudinal lift in the global treeline, and eventually, the vegetation (and soils) 

found on mountain slopes (Beniston, 2001; UK Met Office, 2009).  

  

Figure 4. Classic Humboldt Profile of the Latitudinal Position of Altitude Belts in 

Mountains across the Globe and Compression of Thermal Zones on Mountains, 

Altitudes and Latitudes. Grey is Montane; Black is Alpine/Subalpine and White is the 

Nival Belt (snowline).  
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2.4 Mountain grasslands and shrublands around the world  

One of the key objectives of this thesis is to contribute to the general lack of data in the field of SMD 

in order to support better NRM for MGS. As featured in Chapter 4, Ward et al (2014) provides the 

first estimate for montane, subalpine, and alpine grasslands and shrublands coverage at approximately 

9.38 million km2 (around  six percent) of the Earth’s terrestrial landmass. Like for mountains in 

general, most MGS ecoregions1 are located in the Northern Hemisphere (Figures 5 and 6), with 

significant areas in China (e.g.  Tian Shan Montane Steppe and Meadows, South East Tibet 

Shrublands & Meadows, Tibetan Plateau Alpine Shrublands & Meadows, Central Tibetan Plateau 

Alpine Steppe, Quilian Mountains Subalpine Meadows), the Russian Federation (e.g. Cherskii-

Kolyma Mountain Tundra, Trans-Baikal Bald Mountain Tundra), Greenland (e.g. Kalaallit Nunaat 

High Arctic Tundra), India (e.g. Eastern Himalayan Alpine Scrub and Meadows) and United States 

(e.g. British Range, Interior Yukon-Alaska Alpine Tundra, Alaska-St. Elias Range Tundra) (Olson et 

al, 2003; WWF, 2000).  

South America contains the Southern Hemisphere’s most extensive expanse of MGS ecoregions, and 

include Northern Andean Páramo, Cordillera de Merida Páramo and Central Andean Dry Puna. 

Following this is South Africa and its Drakensberg Montane Grasslands and Highveld Grasslands. 

Smaller and often isolated MGS ecoregions can be found around the world, such as throughout the 

west coast of North America (e.g. Pacific Coastal Mountain Tundra, Sierra-Nevada Alpine and 

Subalpine meadows, Rocky Mountain Alpine and Subalpine Meadows), Australia (Australian Alps 

Montane Grasslands), Europe (e.g. European Alps Alpine Meadows, Pyrenees Alpine Meadows and 

Upland Calcareous Grasslands), New Zealand (South Island Montane Grasslands), Papua New 

Guinea (Central Range Subalpine Grasslands), Africa (e.g. East African Montane Moorlands) and 

broader Asian region (e.g. Altai Alpine Meadows in Kazakhstan) (Olson et al, 2003; WWF, 2000).  

                                                
1 Ecoregions represent larger land size units than ecosystems, but both are constructed using the same biogeographical 

criteria. Ecoregions, also known as bioregions, can be thought of as a repetitive pattern of ecosystems that have 

common regional soil and landform characteristics (Brunckhorst, 2000) 

http://en.wikipedia.org/wiki/Soil
http://en.wikipedia.org/wiki/Landform
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Figure 5. The Tibet-Qingzian plateau in 

China, sometimes called the “third 

pole”, contains the most extensive area 

of mountain grasslands and shrublands 

in the world. 

 
Credit: C.Loyd, 2013.     

 

Figure 6. Location of mountain grasslands and shrublands, versus altitude (Year 2000) 

Data sources: WCMC, 2002; WWF, 2000.  

 

2.5 Human populations and the role of mountain grasslands and shrublands in society  

In 2000, the worldwide mountain population was estimated to be 1.2 billion, 20 percent of all people 

living on Earth (Körner et al, 2005). 70 percent of these people live below 1,500m above sea level 

(asl), with only eight percent (around 90 million) living above 2,500m asl. At this altitude the majority 

of land can be categorised as grazing, barren, sparsely vegetated or mix of all three. Generally, 

mountain population density decreases with altitude, with the lowest proportion of people living 

within the alpine and nival zones. Whilst there are no existing studies quantify the number of people 

living in MGS globally, through GIS mapping (Figures 7 and 8) it can be observed that many MGS 

(e.g. Tibet-Qingzian, Alaska and in Northern Russia) cover vast geographical areas that are isolated 
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from major human settlements and located considerable distances from major roads (Huddleston et 

al, 2003).  

One of the main reasons for this lack of access is that traditionally MGS ecosystems have only 

generated relatively low value in-situ products (e.g. food and fibre) offer little incentive to build 

expensive links to markets (Körner et al, 2005). For developing countries, where food and fibre 

production is the predominant form of economic activity in most MGS areas, family-driven 

subsistence systems are common place (Körner et al, 2005). Access to market provides an opportunity 

to diversify into cash-crop systems, so without mountain roads, communities are at a disadvantage 

compared to their low-land counterparts (FAO, 2015). Moreover, if mountain communities are able 

to get their product (e.g. coffee) to market, as ‘price takers’ they are exposed to global commodity 

rates and higher transaction costs (Körner et al 2005; Wymann et al, 2013).  

Figure 7. Mountain grasslands and shrublands, versus major human settlements (Year 2000) 

Data sources: Balk et al, 2006; WCMC, 2002; WWF, 2000. 
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Figure 8. Mountain grasslands and shrublands, versus major roads (Year 2000) 

 

Data sources: CIESIN, 2013; UNEP-WCMC, 2002; WWF, 2000.  

These issues, combined with the low literacy rates, conflict, food insecurity, geographical 

fragmentation, different languages and cultures within the same regions, a general lack of accessible 

economic resources and the harsh biophysical factors already described above (especially low 

temperature) mean that MGS areas tend to have the highest poverty levels in the world (Starr, 2004; 

Wymann et al, 2013). Ives (1997) estimated that around 80 percent of the world’s mountain 

population lives below the poverty line. The barriers that these issues present for utilising climate 

finance incentives to support SMD in MGS is discussed in detail in Chapter 6.  

Notwithstanding these constraints, globalisation offers new opportunities for mountain communities 

to diversify into non-traditional goods and services. Non-traditional goods and services include, for 

example, growing markets for tourism and speciality mountain products (Wymann et al, 2013). 

Mountain tourism alone is estimated to worth US$70 to 90 billion per year (Panos Institute, 2002). 

However, while mountain tourism is an attractive and growing proposition, it can also have serious 

impacts on fragile MGS ecosystems (e.g. trampling of vegetation and exposure of soils) and in 

limiting sustainable development by competing with traditional subsistence needs, such as the 

harvesting of biomass for household energy requirements (Grabherr, 1982).  

In recent years, the growth of high-altitude mining has also had a significant impact on local mountain 

communities, mainly due to advances in technology that have enabled machinery to work more 
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reliably and efficiently in low-oxygen environments (Kraul, 2014). Increased competition for 

traditional agricultural lands, the contravention of the human rights of indigenous peoples, conflict 

between local and migrant workers, child labour, additional workplace hazards associated with the 

extreme environment (e.g. Acute Mountain Sickness) and the widespread degradation to the fragile 

MGS are becoming more common (Kraul, 2014; Mackay, 2006; Verrier and Greenberg, 2011). Public 

concern about the social and environmental impacts of high-altitude mining have primarily been 

centred on the Páramo ecosystems in Colombia and elsewhere in South America, and the extensive 

grasslands of the Tibetan plateau which are relied upon by local herdsman.  

 

2.6 Biodiversity in mountain grasslands and shrublands, and protected areas 

Mountains and MGS exhibit some of the highest species richness in the world, contributing around 

25 percent of Earth’s biodiversity and 50 percent of its biodiversity hotspots (Moser et al, 2005; 

Spehn and Körner, 2005; Singh, 2011; Väre et al, 2003). For example, the Indian Himalaya has more 

than 8,000 species, including snow leopards and Ibex (IIRS, 2003). Alpine ecosystems alone are 

estimated to contain about four percent of the world’s flowering plant species (Körner, 2004). These 

statistics are surprising if one is to consider the aforementioned harshness of the biophysical 

environment. Conversely, it is these factors that sustain conditions supportive of highly adapted and 

diverse lifeforms.  

The climate on any particular mountain slope can vary greatly over a relatively short horizontal 

distance due to the sharp vertical profile that mountains commonly feature (Beniston, 2003). The 

thermal gradient is about 600 to 1,000 times greater in mountains compared to the conforming 

latitudinal temperature gradient. Such a rapid spatial change in climate also corresponds to a rapid 

spatial change in vegetation and hydrology (Whiteman, 2000). Slope angle and gravity-induced 

erosion has a significant impact on shallow mountain soils and therefore vegetation (Körner, 2004). 

For these reasons, MGS exhibit high biodiversity with clearly observable ecotones governing the 

transition between vegetation types (Beniston, 2003).  

Due to their relative geographic isolation and a long cultural history of mountain communities 

protecting fauna and flora, genetic diversity is also notably high in MGS ecosystems. This isolation 

has motivated many experts to coin ‘mountains’ as “islands” in a sea of human influenced landscapes, 

serving as the last refuges for the endemic species they contain (Körner et al, 2005). The vertical 
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profile of mountains cause native MGS plant species to be found in some of the world’s most 

unexpected places, such as in the alpine zone of the Malaysia’s Mount Kinabalu which has more 

4,000 species of alpine plants (Kohler and Maselli, 2009).  

MGS are also important from an agrobiodiversity perspective, with six of the 20 crops that supply 80 

percent of the world’s food supply (e.g. barley, maize and potatoes) originating from mountains 

(Singh, 2007). This includes around 4,000 varieties of native potatoes and 13,000 medicinal plant 

species (Wymann et al, 2013). Equally, MGS ecosystems have supported the agrobiodiversity 

amongst animals e.g. Yaks, alpacas, llamas, sheep and goats (Singh, 2007). For this reason, while 

maintaining healthy, ‘natural’ MGS ecosystems above the treeline is desirable to ensure the 

conservation of endemic biodiversity, it is equally important to consider the sustainable management 

of ‘semi-natural’ MGS ecosystems of anthropogenic origin, particularly those rangelands below 

treeline which have economic high importance to indigenous herdsman (Gao et al, 2014; Körner et 

al, 2005). The latter are dominant in many parts of the European Alps and Tibetan plateau, and have 

been shaped and sustainably managed over the course of thousands of years. Many semi-

natural/managed MGS in the upper montane, subalpine and alpine zones reflect traditional and 

sustainable farming regimes that host rich, diverse and highly adapted native flora and fauna 

communities (Körner et al, 2005). Moreover, many are the target of protected area establishment 

because they exhibit incredibly high levels of biodiversity (Körner, 2004).   

However, as highlighted in Chapter 6, despite their relative isolation, anthropogenic threats to 

biodiversity from unsustainable tourism, high-altitude mining and agricultural intensification are of 

real concern given MGS ecosystems are highly vulnerable to global change (Macchi, 2010; Price and 

Butt, 2000; Ward et al 2015). According to Beresford et al (2010), Chape et al (2005; 2008) and 

Jenkins and Joppa (2009) protected areas are the most cost-effective and common means to protect 

biodiversity. Under the Convention on Biological Diversity (CBD), member governments agreed that 

17 percent of terrestrial landmass and inland rivers should be protected by 2020. This included a 

theme focused on mountains. While the 17 percent protected area (PA) target has been met for 

mountains on a global scale (noting that 32 percent of all protected areas can be considered 

‘mountainous’), NRM and connectivity at the local and regional scales remains uneven and 

insufficient to the long-term preservation of many MGS species (Rodríguez-Rodríguez et al, 2011) 

(Figure 9). The merits, limitations and challenges of using PAs to conserve MGS is discussed later in 

this thesis, as is the urgent need for novel approaches to NRM strategy and funding.     
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Figure 9. Mountain grasslands and shrublands, and protected areas (Year 2000) 

 
Data source: IUCN and UNEP-WCMC, 2000; UNEP-WCMC, 2002.  
 

2.7 Mountain grassland and shrubland plant ecology 

As already highlighted, mountains exhibit extreme environmental conditions which ultimately 

governs the flora species found on any given slope, at any given altitude and on any given aspect. As 

the climate becomes more extreme (e.g. as altitude, exposure and marginal soil conditions increase) 

plants respond accordingly with the diversity and structure of vegetation communities becoming more 

woody, stunted, and eventually only close-growing to the barren and rocky ground e.g. lichens 

(Körner, 1999; Woodwell, 2004). 

Alpine plant life can be likened to artic plant life in that both have a relationship with the treeline, 

whether this is a latitudinal band of boreal forests that encircle the Earth or a distinct altitudinal 

transition line that may exist high up on the side of mountain (Billings and Mooney, 1968). Though 

the treeline remains the most reliable indicator to distinguish between artic and alpine vegetation, 

there are limitations, as both types may occur below treeline due to natural and anthropogenic reasons. 

This is especially true for the Southern Hemisphere and the Andes in central Chile in particular where 

the boundary between alpine and subalpine zones is difficult to ascertain. Expert judgement therefore 

plays a key role in supporting the use of empirical, GIS and other data in determining exactly what 

constitutes alpine vegetation, and therefore, what was considered a MGS for the purpose of this study 

(Billings and Mooney, 1968). 
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Regardless of geographical location, terrestrial arctic and alpine plants can usually be categorised as 

either Angiosperms (flowering plants, mostly perennial), lichens, bryophytes or ferns. More simply 

put, one can say that MGS vegetation generally consists of low perennial herbs and dwarf shrubs, 

noting that composition, structure, floristic complexity and functional traits vary widely depending 

on whether a mountain resides in a tropical, sub-tropical or temperate climates (Billings and Mooney, 

1968; Cornelissen et al, 2003; de Bello et al, 2010; Grime, 2001; Pickering and Venn, 2013).  

A common and unique characteristic of alpine plants is their ability to not only survive but also 

metabolise, grow and reproduce at very low temperatures. Many herbaceous perennials are adapted 

to make the most of the short growing season, shooting quickly during the spring thaw (Hodgson, 

1966; Körner et al, 2005; Ssrensen, 1941). These abilities are critical as alpine plants suffer frigid and 

powerful winds, heavy precipitation and runoff due to slope, temperature fluctuations, extreme solar 

radiation and low partial pressures (oxygen and CO2) on an almost daily basis, all while clinging to 

steep slopes where they are rooted in shallow mountain soils.     

The height of alpine plants is determined by a number of limiting factors. First, intense winter winds 

and the spatial distribution and depth snow, which serves to force trees to grow into woody, strong 

but small Krummholz shrubbery. Second, and at the other extreme, exposure to harsh and often dry 

summer conditions which limits cambial growth and seed production through moisture deficiency 

and exposure to punishing levels of solar radiation (Daubenmire, 1954; Billings and Mooney, 1968; 

Hustich, 1948). It can be assumed that the more severe the mountain environment, the greater 

likelihood shrubs will be prostrate (lie just above the ground) or be confined to snowbeds that serve 

as insulation. Moreover, the most extreme alpine microclimates lie at high elevations within late-

lying snow banks and on windswept ridges. Here, growth is limited to mostly cryptogams (lichens 

and mosses) which are more adapted to strong wind and low night time temperatures than vascular 

plants – with cushion plants and small herbs making the occasional appearance in some snowbeds 

where they can gain some protection from the elements (Billings and Mooney, 1968).  

Though MGS species can be considered hardy and resilient, there is a clear correlation between the 

decline in taxonomic diversity and altitude (Körner, 2004). As discussed above, climate is one of 

these factors. Other factors include: adaptation limits (scarcity of adaptive or pre-adaptive taxa); 

limited physical area (mountains often exhibit more rock, ice and unstable/steep surfaces at altitude); 

limited functional space (geological time and growing period); seasonal time constraints (e.g. 

reduction in growing season due to draught); and, geological time constraints (e.g. episodic 
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evolutionary periods interrupted by glaciation) (Hawkins, 2004; Körner, 2000; Körner, 2003). Due 

to these characteristics and limitations, MGS are considered to be exceptionally fragile and very slow 

to recover from disturbances such as trampling and wildfire (Beniston, 2003; Körner et al, 2005). In 

many cases, once damage occurs, it may be irreversible. Hamilton (2002) concluded that the majority 

of these ecosystems currently exist in their pristine state and provide a number of important functions 

and ecosystem services to humanity. However, Körner (2004) also noted that while pressure on MGS 

was subsiding in industrialised countries it was increasing (and sometimes rapidly) in developing 

countries. This thesis investigates the latest trends in MGS ecological health in Chapter 6.  

 

 

2.8 Mountain grassland and shrubland soils 

Commonalities also exist between soils formed in artic and alpine ecosystems. In both cases soils are 

slow to form, are influenced by a short growing seasons and are sensitive to climatic change 

(Hagedorn et al, 2010a). However important differences exist. First, soils in MGS ecosystems have 

in many locations been intensively used and modified over the course of history, especially in Central 

Europe. Second, soils in high-elevation temperate alpine climates are better insulated from frost, and 

commonly receive higher rainfall and warmer winter temperatures compared to their artic 

counterparts. Third, soils on mountain slopes are usually thin but drain well, therefore moist soils and 

peatlands generally only occur in wet coastal and/or geologically old mountain ranges such as the 

Snowy Mountains of Australia. Also, due to gravity and the extreme climatic conditions, mountain 

soils (particularly in the alpine) are more susceptible to disturbance caused by erosion, avalanches, 

landslides, wind, runoff and unsustainable land use practices (Hagedorn et al, 2010a; FAO 2015). 

Lastly, as for vegetation, mountains exhibit the highest number of soil types per area (‘Vertical Soil 

Zonality’) due to climate, slope, aspect and physical area available for soil deposition. The formation 

and distribution of mountain soils is also influenced by the available parent materials, prevailing 

winds, geological timeframe, chemical, and retreating glaciers. For many years it has been understood 

that mountain soils thus present a high degree of spatial variability, which in-turn relates to the soil’s 

properties (e.g. texture and structure), available organisms, composition (i.e. percentage sand versus 

percentage silt versus percentage clay), vegetation cover and ecosystem function (Bonefacio, 2013; 

Dokuchaev, 1899; FAO 2015).  

The FAO (2003) estimates only 22 percent of mountain areas to be suitable for agriculture. Given the 

number of people living in mountain areas, substantial stress is placed on mountain soils in the form 



 

 
  39 

 

of overgrazing and agricultural intensification that, combined with extreme climatic conditions and 

geomorphic processes (that rarely exist in lowland areas) commonly causes irreversible soil loss, 

ecosystem degradation and adverse socio-economic impacts e.g. loss of agricultural land and slope 

instability, which causes a risk to humans (Hurni, 1999). So damaging is this soil loss that it has been 

deemed by some SMD practitioners as the most threatening process to MGS agriculture and the 

communities which rely on it (FAO, 2015; Hurni, 1999). The loss of dense native vegetation cover is 

a key factor driving soil erosion and thus CO2 emissions from MGS ecosystems, the impact of 

LULUC which is modelled and discussed in Chapter 5 of this thesis.   

According to the FAO (2015) mountain soils “ensure food security and nutrition to 900 mountain 

people around the world and benefit billions more living downstream” (p.5). The importance of soils 

has been recognised in four of the recently adopted Sustainable Development Goals (SDGs): food 

security; drinking water; climate mitigation and adaptation; and, for their significance to terrestrial 

ecosystems and in halting biodiversity loss and environmental degradation (United Nations, 2016). 

The ecosystem services provided by MGS soils is further discussed below.       

A map showing the spatial distribution of soil reference groups can be found in Figure 10. The World 

Reference Base for Soil Resources is the recognised international system for classifying soil into 32 

taxonomic groups (e.g. Histosols, Cryosols and Fluvisols) according to 10 different identification 

classes e.g. ‘soils with thick organic layers’ (Histosols) and ‘soils influenced by water’ (Fluvisols) 

(IUSS Working Group, 2006). This grouping is used by the Harmonised World Soil Database 

(HWSD) which underpins the results produced in Chapter 4 and in Ward et al (2014). Understanding 

soils is a critical component in this study, as Ward et al (2014) estimated that on average 97 percent 

of ecosystem carbon in MGS is SOC.  
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Figure 10. Soils in mountain grasslands and shrublands (Year 2000) 

 

Data source: HWSD, 2011; UNEP-WCMC, 2002. 

 

2.9  Ecosystem functions and services of mountain grasslands and shrublands 

Extending from discipline of conservation biology, the concept of ecosystem function focuses on the 

geochemical, biological, physical processes that occur within an ecosystem (Sekercioglu, 2010). The 

specific functions of MGS ecosystems include, for example: securing soil and the stabilisation of 

headwaters of major river systems (such as the Mekong River Basin which flows from the Tibetan 

Plateau), resulting in good water quality flowing downstream into the rivers and streams; fixing 

carbon dioxide and nitrogen from the atmosphere into biomass and soils; protecting mountain soils 

(including permafrost) from erosion; providing habitat; producing oxygen; and, harvesting water 

from the atmosphere (Körner et al, 2005).  

Ecological function is of the upmost importance to the provision of ecosystem services, which are 

defined by Daily (1997, p.2) as “the conditions and processes through which natural ecosystems, and 

the species that make them up, sustain and fulfil human life”. Kremen (2005, page 3) described 

ecosystem services as simply “the set of ecosystem functions that are useful to humans”. An 

ecosystem services can be categorised as one of three types: i) Provisioning Services, for example the 

extraction of resources to benefit local and downstream communities e.g. water for irrigation and 

drinking, metals and minerals, medicinal plants and timber; ii) Regulating Services and Supporting 

Services e.g. habitat for biodiversity, climate change mitigation, soil fertility and erosion control 
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(agricultural productivity) and hazard reduction; and, iii) Spiritual and Cultural Services, such as 

recreation (hiking, fishing, skiing etc.), worship, ‘having a sense of place’ and indigenous knowledge, 

biodiversity viewing and aesthetic appreciation (Körner et al, 2005; ICIMOD, 2012; Sekercioglu, 

2010).  

Ecosystem services provided by MGS vary depending on the altitudinal belt (Figure 11 and Figure 

12) and include: climate regulation (storing carbon in soils and biomass); mitigating risks from natural 

hazards through slope stabilisation (e.g. landslides and avalanches); storing water and releasing it 

slowly, thus reducing peak stream flow and ensuring a year-round source of water for irrigation, 

drinking and energy generation; providing biomass for fuel and construction; facilitating food and 

fibre production; and, a place of spiritual meaning, culture and recreation. Maintaining function and 

diversity of MGS is paramount to the provision of ecosystem services and in guarding against system 

failure (Körner, 2004).        

 

   Figure 11: The importance of ecosystem services provided by mountains  
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Figure 12. MGS provide slope stability and other ecosystem functions 

 
Credit: Ward, 2012. 
 

Many of the benefits provided by ecosystem services can be considered intangible, in that there is 

often no market for them. As such, putting a price on them is problematic (ICIMOD, 2012). 

Moreover, these ecosystem services are generally dynamic, co-dependent and multifunctional, 

varying over temporal and geographic space. For example, MGS mitigate climate change but at the 

same time stabilise slope, which has flow on benefits for human safety, crop cultivation and improved 

catchment water quality (Rasul et al, 2011; Ring et al, 2010). The value of MGS ecosystem services 

also varies depending on scale. For example, while at the macro level they are important for global, 

regional and nation economic growth, they are often critical in sustaining the livelihoods of local 

communities (ICIMOD, 2012).  

 

2.10  Climate regulation and carbon storage in mountain grasslands and shrublands 

Climate regulation, defined here as the “influence of ecosystems on near-surface climatic conditions, 

such as air temperature and moisture” (West et al, 2010, page 126), is recognised as an important 

ecosystem service by many studies.  Ecosystems regulate the global climate system via both 

biochemical (CO2 sequestration) and biophysical (balancing heat and moisture) processes (Foley et 

al, 2003; Körner et al, 2005; ICIMOD, 2012; Piekle et al, 2002). Though an ecosystem’s biophysical 

contribution to climate regulation is important, this study focuses only on climate change mitigation 

as a result of biochemical carbon sequestration processes, which have been effectively converted into 

Snow tussock in New Zealand, helping 

to stabilise a mountain slope, 

sequestering carbon, and filtering and 

managing snowmelt run-off.   
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a commodity and traded on carbon markets around the world (Hungate and Hampton, 2012) - this is 

a core research question answered by this study.  

Plant functional traits (discussed below) both drive and limit CO2 sequestration in MGS ecosystems 

(De Deyn 2008). Local climate is especially influential. Like for lowland and marine ecosystems, 

alpine, subalpine and montane ecosystems remove CO2 from the atmosphere and sequester it in alpine 

meadows and steppe, herbs, sages and other vegetation during a short but intense growing season, 

before slowly storing it in the soil (European Commission, 2008; ICIMOD, 2012; Kohler et al, 2012). 

Like for other ecosystems, MGS also release CO2 back into the atmosphere via natural respiration, 

fire or other disturbance (Hungate and Hampton, 2012).  

Numerous studies show that the net C stored and sequestered in above and below ground biomass of 

MGS ecosystems to be much less than for most forest types (Gullison et al, 2007; Rose and Sohngen, 

2011; Ruesch et al, 2008; Ward et al, 2014). This is also reflected in internationally accepted methods 

and modalities for calculating C stocks and fluxes in various ecosystems (IPCC, 2003). Conversely 

though, a number of studies have led researchers to infer that SOC may be greater in treeless arctic 

and alpine ecosystems (Leifeld et al, 2009; Perruchoud et al, 2000; Sjogersten et al, 2003; Weiss et 

al, 2000). This may be due to a number of reasons, including that these soils are isolated and relatively 

inaccessible compared to lower elevation montane and (especially) lowland soils, where agricultural 

development is considered economically more attractive and where such soils have evolved and laid 

undisturbed for relatively long geological time periods (FAO, 2015). It may also be because alpine 

and arctic tundra ecosystems tend to allocate a higher proportion of plant C to the soil (Jackson et al, 

1996). Moreover, the results of some studies also imply that in some artic (and therefore alpine) 

ecosystems, SOC may be higher than in forests ecosystems (Ping et al, 2008). Furthermore, De Deyn 

et al (2008) suggests that SOC pools are greatest in wet biomes, such as tropical tundra ecosystems 

or coastal temperate MGS ecosystems (Britton et al, 2011). As investigated in Ward et al (2014) and 

summarised in Table 2 (Chapter 4) there are few studies estimating carbon stocks at a local level for 

MGS ecosystem, let alone at the global scale which may be more useful for strategic decision making.    

Considering this and the aforementioned fragility of MGS ecosystems, C stores in mountain soils 

tend to be relatively substantial but also highly vulnerable to global change (Hagedorn et al, 2010a; 

Ward et al 2015). Like for vegetation in MGS, once soil is disturbed it is unlikely that it can be 

restored to its original condition (Körner et al, 2005). Noting that many MGS ecosystems remain 

isolated and protected from anthropogenic land use and land use change (LULUC), climate change 
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may be the biggest threat to mountain soils. Hagedorn et al (2010) suggests that global temperature 

rise may increase SOC decomposition, turning alpine soils into a source of CO2 rather than a sink, 

particularly for permafrost soils.   

 

2.11  MGS, climate regulation, and the ecological economic and market perspectives 

Ecological economics seeks to address the relationships between ecosystems and economic systems, 

and focuses on six distinct themes that serve to distinguish it from conventional neoclassical 

economic approaches: sustainability; multiple values; intergenerational equity; uncertainty; 

methodological pluralism; and land ethics or ‘utilitarianism’ (Costanza, 1991). Given the complex 

and competing social, environmental and economic priorities associated with climate change, 

ecological economics can provide a useful interdisciplinary approach to considering not only cost-

effective mitigation and adaptation strategies but also in ensuring that any climate action is equitable 

and compatible with other development goals (Scrieciu et al, 2011).  

A number of recent studies recommend that traditional neoclassical economic approaches to climate 

change, such as single-discipline focused cost-benefit analysis, need to shift to a “new inter-

disciplinary and multi-disciplinary risk analysis” (Barker 2008, p.174) that also considers the social 

values associated with the future climate system and not just purely economic ones (Jaegar et al, 

2008). Specifically, in his 2008 critique of the Stern Review, Barker (2008) sets out four issues of 

critical importance to climate change that in his view traditional economic modelling fails to 

contemplate, namely that: i) the global economy and its relationships with energy and GHG emissions 

is complex and dynamic, with future climate effects and technological pathways exhibiting a high-

degree of uncertainty;  ii) intergenerational equity associated with climate change is a key ethical 

issue that should be informed by moral philosophy; iii) the study of economics and engineering 

history is central to identifying energy-related low-carbon possibilities; and, iv) the politics of climate 

change often results in government trade-offs which are currently not adequately factored into 

mainstream social welfare functions. 

From an ecological economics perspective, the ‘green economy’ fundamentally differs from the ‘grey 

economy’ (and underlying conventional economics) in two ways. First, the green economy does not 

treat the environment as a subset of the economy. Rather, it puts it front-and-place, with the economy 

as a subset of the environment (Daly and Farley, 2010). Second, the green economy recognises that the 
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externalities (e.g. land degradation) caused by economic growth need to be internalised in order to 

address market failure and promote equity and the other key principles of ecological economics 

(Costanza, 1991; Richardson, 2013). If one is to take an ecological economics view of MGS then 

these ecosystems should be considered alongside other ecosystems (marine, forests etc) as an 

ecological asset that is also valuable in the green economy, based not only on the relative benefits 

provided to society but also their intrinsic worth next to other lifeforms that exist within Earth’s 

biosphere. Furthermore, the green economy offers the opportunity to recognise the benefits of 

ecosystems in a monetary form (e.g. carbon markets) that can provide financial incentives to improve 

the health of natural capital.  

However, just how valuable are MGS ecosystems? And, just how warranted is the need to put a value 

on something that maybe considered ‘priceless’? In answering the first question, economic valuation 

presents one method that can assist in answering this question. And in answering the second question, 

TEEB (2010) concluded that “natural resources are economic assets, whether or not they enter the 

marketplace” and that “conventional measures of national economic performance and wealth…. fail 

to reflect natural capital stocks of flows of ecosystem services contributing to the economic visibility 

of nature” (p.26). The report went on to recommend that “an urgent priority is to draw up consistent 

physical accounts for forest stocks and ecosystem services, both of which are required, e.g. for the 

development of new forest carbon mechanisms and incentives” (p.26). From this perspective, 

valuation makes sense if one is to build better environmental accounting systems that can be used to 

improve decision making i.e. ‘you can’t manage what you have not measured’.  

In the case of valuing and assessing climate change policy options for carbon stored in MGS we can 

generally assert economics as a relevant discipline as it explains why reward-driven economic choices 

made by humans can lead to lower, or indeed higher, climate change impacts (Robbins, 1932). 

However, as noted above, taking a neoclassical versus ecological economic approach also provides 

contrasting determinations. For example, Nordhaus’ (2007, p.177) neoclassical cost-benefit analysis 

approach to the climate change problem concluded that “the Gore and Stern proposals… are more 

costly than [doing] nothing”. In his survey of 80 peer-reviewed estimates, Tol (2005, p.2073) made 

a similar finding in that “One can therefore safely say that, for all practical purposes, climate change 

impacts may be very uncertain but [it] is unlikely that the marginal damage costs of carbon dioxide 

emissions exceed [US$14/tCO2] and [they] are likely to be substantially smaller than that”. By 

contrast Stern’s (2007) multi-dimension risk analysis concluded that the benefits of early and strong 

GHG mitigation action would outweigh the substantial costs imposed by climate change on the 
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economy, environment and human life while considering intergenerational equity as a key factor. 

Stern (2007) subsequently estimated this ‘Social Cost of Carbon’ (SCC) to be US$126/tCO2, 

therefore much higher than Tol’s estimate. As a more recent and popularised term, SCC can be 

defined as “estimate of the monetized damages associated with an incremental increase in carbon 

emissions in a given year” whose purpose is to “allow agencies to incorporate the social benefits of 

reducing carbon dioxide (CO2) emissions into cost-benefit analyses of regulatory actions that impact 

cumulative global emissions” (US Government, 2015 p.2). 

Estimations of SCC fall somewhere in between Stern and Tol’s estimate given above. The US 

government, for example, put its central estimate for SCC at US$36/tCO2 in 2015 (2007 dollars), with 

estimates given for higher (US$11) and lower discount rates2 (US$105) (US Government, 2015). 

Some ecological economists advocate that where outcomes cannot be adequately expressed in 

monetary terms that a zero or close-to-zero discount rate should be applied with the premise that 

intergenerational equity discards the time preference and that a resource or benefit is worth the same 

in the future as it is now (Cline, 1994; Howarth, 2003; Stern, 2007). This approach to the climate 

change problem popularised by Stern encapsulates the key elements of ecological economics through 

the use of multi-criteria analysis (for example) which attempts to evaluate non-monetised (or non-

tradable) values such as human suffering damage, damages to nature and the risks and uncertainties 

of social decision-making. This thesis takes a similar perspective, and accounts for these issues when 

estimating the non-tradable economic value of carbon stored in MGS ecosystems, with the intention 

of providing policy makers with an acceptable proxy through applying SCC.  

To date a number of ecological economics based studies have tackled similar problems as posed by 

this thesis. For example, Costanza et al (1997) estimated the value of world’s ecosystem services and 

natural capital to be approximately US$46 trillion per annum in 2007 dollars (updated to US$125 

trillion in Costanza et al 2014). Withstanding the morale and intrinsic issues arising from putting a 

price on what many consider priceless values (McCauley, 2006), Costanza aimed to quantify the 

benefits to humanity from a multitude of natural resources and processes that are provided by the 

world’s ecosystems which had not at that time been quantified in economic terms nor considered in 

contemporary financial decision making frameworks (Ackerman and Heinzerling, 2004). While the 

                                                
2 According to EDF, IPI and NRDC (2016) “the discount rate is how economists measure the value of money over time  

the tradeoff between what a dollar is worth today and what a dollar would be worth in the future” and “social cost of 2 

According to EDF, IPI and NRDC (2016) “the discount rate is how economists measure the value of money over time  

the tradeoff between what a dollar is worth today and what a dollar would be worth in the future” and “social cost of 

carbon pollution estimate decreases as the discount rate increases because a higher discount rate implies that people care 

less about future generations than they do about the present”.   

http://en.wikipedia.org/wiki/Ecosystems
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article generated criticism for the aforementioned valuation problems it did serve to heighten the 

understanding of important ecosystem services and the associated economic benefits to human 

welfare, commencing a discussion amongst scientists, economists and policy makers on how best to 

prioritise, protect and enhance natural capital. Another study by Pendleton et al (2012) sought to 

quantify the SCC for global Blue Carbon fluxes with the explicit intent of: providing the first 

evaluation of economic impacts associated with the clearing of mangroves, seagrass and marshes; 

and; highlighting how Blue Carbon could be incorporated into international carbon market protocols.  

There are however only a handful of ecological economic orientated studies for mountain forests, and 

even fewer focused on MGS ecosystems. At the local scale, ecosystem valuation studies have been 

completed for a number of locations in the European Alps (Baumgart, 2005; Grêt-Regamey et al, 

2007a; Getzner, 2000; Gliick and Kuen, 1977; Glos et al, 2006; Golo et al, 2005; Grêt-Regamey et 

al, 2007b; Hackl and Pruckner, 1997; Jaggin, 1999; Lowenstein, 1995; Tangerini and Soguel 2004). 

The majority of these studies have used contingent valuation methods to value just one ecosystem 

service (e.g. scenic beauty, avalanche protection, recreation), with only two attempting to value 

multiple ecosystem service benefits (including carbon sequestration). All of these studies focused on 

just one discrete geographical location e.g. Davos Switzerland. Grêt-Regamey et al (2008) point out 

that there is scope and potential benefits to policy makers in broadening valuation frameworks 

(beyond this narrow focus) to support planning processes, particularly when considering the most 

appropriate location for a new development. Grêt-Regamey and Kytzia (2007) go further and 

advocate the benefits that ecological economic valuation can contribute to regional planning and 

development. At the global level, no such studies exist for MGS ecosystems.         

A literature gap thus exists. For C stored in MGS, a similar outcome is sought whereby policy-makers, 

researchers and potential carbon market participants are made aware of the value of C stored in MGS 

ecosystems. By estimating the relative value (Chapter 5 of this thesis), one of the objectives of this 

thesis is to make “the values of nature visible and accountable for in economic decision making” 

(Akerman and Peltola, 2012 p.1). Another objective of this thesis is to contribute to carbon market 

protocols, so to enable climate finance to be applied to MGS NRM issues.    
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2.12  Natural resource management challenges for mountain grasslands and shrublands 

Climate change, wild fires, agricultural intensification, tourism and urban development are substantial 

threats for alpine, subalpine and montane vegetation and the climate regulation services they provide 

(Beniston, 2001; Godde et al, 2000; Körner et al, 2005). A global report by a number of notable 

government and research organisations was presented to stakeholders at the recent United Nation’s 

Rio+20 Summit in Brazil and emphasized the importance of dealing with these threats, stating that 

“Twenty years after Rio, the challenge of sustaining the provision of these goods and services has 

never been greater. The global community must act – a new agenda and strengthened institutional 

framework for mountain development is urgently required” (Kohler et al, 2012 p.5).  

The establishment of protected areas is the most commonly favoured conservation strategy in 

mountain landscapes, with 17 percent of the world’s mountains outside Antarctica being protected 

under such regimes (Rodríguez et al, 2011). Despite this, when compared against international targets 

for biodiversity conservation (e.g. the Global 200 Ecoregions, Olson and Dinerstein, 2002) existing 

mountain protected areas remain poorly connected and insufficient in size, with endemic biodiversity 

in many of these zones remains poorly represented (Rodríguez et al, 2011). The establishment of 

protected areas adversely impacts the financially poor local communities that inhabit high-mountain 

regions through restrictions placed on economic development opportunities (Adams et al, 2005; 

Huber et al, 2005; Daily et al, 2009; Htun et al, 2011). In addition, the costs of managing these 

protected areas for pests, fire and illegal activities are usually high and underfunded by government 

(James et al, 1999; Green et al, 2012; McCarthy et al, 2012). 

Another important consideration is the trans-boundary nature of mountains. A mountain range may 

be protected by local authorities in one country, whilst in another the same mountain range may be 

open to unchecked development. The consequence is usually a decline in the ecoregion’s health as a 

whole. This highlights the need for NRM policies that can apply across geo-political boundaries 

(Kohler et al, 2012). Despite the apparent logic and need for cross-boundary management of 

mountains, governments have to date struggled to achieve such outcomes, and have largely failed to 

adequately balance conservation and development needs in mountains worldwide. Intergovernmental 

and other SMD focused organisations and experts are increasingly advocating for novel and broad-

based approaches to the NRM of mountains and MGS ecosystems (FAO, 2009; ICIMOD, 2012; 

Price, 2007). To this end, the introduction of climate policy-based economic incentives could provide 

a much needed NRM funding source through encouraging developers and investors to consider the 
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real value of ecosystems services provided by mountains (Tobey, 1996) and enable local communities 

to be genuinely engaged in SMD opportunities (Draper, 2000). 

  

2.13  Climate finance and carbon markets  

The commoditisation of CO2 (and effectively climate regulating activities) through national and 

international quantity-based emissions trading and carbon pricing schemes over the last decade has 

presented an economic incentive to address both biodiversity loss and climate change (Orlando et al, 

2002; Thomas, 2011). In 2012, the global market for tradable carbon credits was valued at US$176 

billion (World Bank, 2012), which included carbon compliance units and voluntary offsets created 

under schemes and standards such as the Clean Development Mechanism (CDM), European 

Emissions Trading Scheme (EU-ETS) and Verified Carbon Standard (VCS). The latest estimate, 

which also includes non-market direct climate financing (e.g. traditional loans and low-interest loans) 

puts this figure much higher. Buchner et al (2015) calculated total climate finance pools in 2014 to 

be US$391 billion, US$243 billion of which is estimated to come from the private sector and US$7 

billion of which was directed to land use projects.     

Significantly, governments around the world have also committed US$100 billion per annum by 2020 

by way of the Green Climate Fund which will provide upfront grants to support climate change 

mitigation and adaptation projects in developing countries (Abbott and Gartner, 2011). Significantly, 

the signing of the UNFCCC Paris Agreement in late 2015 has buoyed hope for more investment in 

land-based carbon mitigation projects and has set the stage for long-term financing which supports 

the use of novel and rapidly growing economic incentives, such as green bonds, to meet the goal of 

US$16.5 trillion which is needed to keep global warming below 2 degrees Celsius (Climate Policy 

Initiative, 2016).  

The utilisation of climate finance can yield valuable and sustainable co-benefits e.g. provision of 

infrastructure to the poor, lower particulate emissions and better health when using cook stoves 

(Freeman and Zerriffi, 2014; Lin et al, 2013). Carbon offsets are not only regarded as an important 

carbon management option for firms that are required to reduce their net reportable emissions under 

domestic regulatory and voluntary schemes, but when properly considered, a mechanism by which 

important sustainability benefits can be also realised (Dargusch and Thomas, 2012; Lin et al, 2013). 

While a number of institutional, governance and technical barriers remain, there is a growing 
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opportunity to leverage carbon markets and finance to support conservation, improve ecosystem 

services and alleviate poverty through investment in clean technology and ecological restoration 

projects (Crossman et al, 2011; Lipper and Cavatassi, 2004; Peterson et al, 2012). Under the right 

conditions, carbon markets may also be ‘stacked’ with other Payment for Ecosystem Service (PES) 

credits, such as those for hydrological services, with the aim of arresting further biodiversity loss 

(Hein et al, 2013; Gold Standard Foundation, 2015).   

From a natural ecosystem perspective, climate policy has focused on the use of economic incentives 

(e.g. grants, subsidies, market-based instruments) to encourage developers and government to reduce 

GHG emissions through a number of means. These include sequestering carbon in ecosystems 

(predominantly forests), avoiding the clearance of native vegetation and the disturbance of soils, and 

minimising the impact of wildfires and pest species on indigenous plants through focused 

management regimes (Sedjo and Sohngen, 2012; Venter et al, 2009). These incentives have arguably 

been successful in mobilising funds to support new reforestation, avoided deforestation, fire 

management, grassland rehabilitation and other biological carbon offset projects worldwide. This 

heightened interest in carbon offset mechanisms and carbon finance pools has led to a greater need 

for robust data to support carbon accounting, monitoring, reporting and verification principles to 

ensure that emissions are genuinely being reduced (Cowie et al, 2007; Gupta et al, 2012).  

A growing body of evidence on lowland terrestrial, marine and coastal ecosystems is pointing to the 

prevalence of substantial carbon sinks which are under threat from anthropogenic and natural forces. 

This has important implications for international carbon budgets and the role these ecosystems should 

play in climate policy (Beer et al, 2010; Dixon et al, 1994; Fourquerean, 2012; McCleoud et al, 2011; 

Zhao and Running, 2000). There is increasing recognition of the importance of natural landscapes to 

climate change mitigation and adaptation. The concept of ‘Blue Carbon’, for example, has highlighted  

the opportunity to store C in marine and coastal ecosystem vegetation and sediment e.g. mangroves, 

seagrass and tidal marshes (De Blas 2009; Djukic et al, 2010; Mackey et al, 2008; Pendleton et al, 

2012; Siikamäki et al, 2012; Smith, 2010).  

Without a global assessment and understanding of carbon stocks in MGS, these ecosystems cannot 

be effectively integrated into international carbon budgets and climate policy. This shortcoming is 

important to recognise because the aforementioned carbon incentive schemes cannot be extended to 

MGS ecosystems without the support of robust and standardised carbon accounting data that reflects 

the biochemical and biophysical characteristics of MGS (Bumpus, 2011; Wilcock, 2013). It also 
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represents a barrier to market proponents and researchers who without recent underlying scientific 

information cannot accurately measure and assess the opportunity of developing carbon finance 

related projects against other economic opportunities (Mcleoud et al, 2011). Critically, no estimates 

for economic (non-tradable) value for carbon in MGS had been published as yet. It is important to 

evaluate the economic value of these stocks globally, but it is acknowledge that any value derived at 

a global scale can vary dramatically for different stakeholders and pose morale challenges on valuing 

what can intrinsically be regarded as priceless (Sagoff, 2008).  

 

2.14  Climate finance implementation issues for mountain grasslands and shrublands 

The use of climate finance to support NRM and sustainable development in MGS ecosystems is an 

attractive proposition, however many challenges, barriers and risks exist. One of the key issues is 

whether (or not) climate finance can provide an economically feasible alternative to BAU 

development activities with various studies highlighting the priority that governments put on 

achieving financial objectives over environmental orientated goals (Strassburg et al, 2009; Osborne 

and Kiker, 2012). For example, a study on whether the sale of carbon offsets could provide a 

sufficiently economic alternative to large-scale logging in Guyana, Osbourne and Kiker (2012) 

concluded that a relatively low carbon price could provide competitive returns compared with 

logging, provided benefits gained from forest protection. However, other studies reveal that although 

carbon finance and offset markets remain a promising option to support conservation goals and 

enhance ecosystem services, a number of hurdles remain including the high transaction costs of 

getting carbon offset units to mark, how long-term permanence requirements may inhibit uptake, the 

risk-of-reversal associated with landholders clearing land in the future, lack of institutional and skills 

capacity, and, the risk of emissions happening in another location e.g. carbon leakage (Cacho et al, 

2013; Dargusch et al, 2010; Galik and Jackson, 2009).  

Thomas (2011) investigated carbon mitigation project constraints further and categorised these into 

four categories: (i) capacity; (ii) finance; (iii) governance; and, (iv) regulation. Firstly, with regards 

to capacity, individuals and organisations can be constrained by knowledge deficiency due to factors 

such as a lack of knowledge of climate policy, technologies and market opportunities (Dargusch et 

al, 2010), a shortage of data and/or information (Pelletier et al, 2010), and, inadequate technical and 

operation skills (Thomas and Dargusch, 2010). Capacity could also be adversely affected by limited 

access to networks (Suneetha et al, 2011) and the local availability of physical and technological 
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infrastructure e.g. electrical grid connectivity for installing renewables and heavy machinery that may 

be required to prepare carbon offset project sites (Rochecouste and Dargusch, 2011; Sirohi, 2007).  

Secondly, financial constraints such as limited access to capital, high transaction costs and delayed 

returns were all identified as major hurdles to carbon mitigation project development, particularly 

with regard to bio sequestration projects. Capital investment requirements are equal to the costs of 

new technology, materials, machinery and training, while transaction costs are usually up-front and 

relate to project origination (e.g. prefeasibility studies, technical expertise and data verification); 

depending on how stringent the rules of a particular carbon offset scheme are, both capital 

requirements and transaction costs can be very high (such as in the case of the CDM) and can thus 

inhibit the development of offset projects (Thomas, 2011). Delayed returns are a common constraint 

to the development of biological carbon offset projects as any carbon credits are generally only issued 

when carbon is sequestered, with associated revenue from the sale of these credits to follow once 

registration, verification and monitoring procedures have be completed. For example, an afforestation 

carbon offset project developer may need to wait between three and five years before any carbon 

credits are issued. Depending on how project finance is structured (debt versus equity, for example), 

the holding costs associated with interest rates and bank fees can dilute the required rate of return. 

For this reason, traditional grants (upfront payments) may be more attractive for developers than 

seeking carbon offset credits.   

Thirdly, the legitimacy and effectiveness of governance structures also present key barriers to using 

climate finance. Ensuring that stakeholders from local and downstream communities and varying 

levels of governments have a positive perception of a carbon mitigation project is vital to its 

legitimacy as an accepted development opportunity i.e. without legitimacy projects can face wide 

ranging community opposition. At a higher level, legitimacy also governs the broader acceptance of 

climate policy which in-turn affects the collaboration amongst stakeholders and ultimately the 

successful implementation of the project (Rosendal, 2011). Legitimacy can be adversely impacted by 

institutional fragmentation and policy overlap therefore policy mechanisms must be continuously 

evolved on a national basis in-line with international rules to ensure climate mitigation strategy is 

effective on a global scale (Medrilzam et al, 2011). The effectiveness of carbon offset projects can 

be gauged on the extent of emissions reductions and ancillary benefits such as technology transfer, 

capacity building and more environmentally and socially sustainable industries; however the 

challenge of balancing self-serving commercial interests with broader sustainable development goals 

remains.  
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Lastly, regulatory barriers such land tenure and the application of additionality and permanence 

provisions under the rules of various offset schemes often pose a significant hurdle to the development 

of carbon offset projects (Thomas, 2011). Land tenure relates to the statutory or customary right of 

an individual or group to own land or exploit its natural resources according to a set of conditions and 

time limit. Much of the global MGS carbon stocks exist in developing countries where they are 

exploited by local communities for fuel, food, water and shelter under unclear tenure (Ward et al, 

2014). While many governments may have the option of relocating these communities and protecting 

the natural resources to meet emissions avoidance goals, the failure to effectively engage with local 

communities and resolve tenure issues can ultimately lead to negative consequences for carbon offset 

project development e.g. illegal logging (Lasco, et al 2011; Medrilzam et al, 2011). 

Another regulatory barrier is that concerning the concept of ‘additionality’. The intent of the 

additionality clause administered under the CDM (for example) is to ensure that any emissions 

reductions from an offset project would not have otherwise occurred for regulatory reasons or in the 

absence of revenue derived from the sale of offset credits (UNFCCC, 2010). There are a number of 

reasons why ‘additionality’ can be prohibitive to carbon offset project development: (1) It may be a 

disincentive for countries to implement improved environmental regulation (Bode and Michaelowa,  

2003); (2) The generic approach to determining additionality does not take into account the varying 

financial margins associated with the needs and characteristic of different project types (Rochecouste 

and Dargusch, 2011); and; (3) The individual assessment of additionality is highly subjective, leading 

to project applications that lack robustness and credibility and that get rejected by independent 

verifiers (Schneider, 2009). Of critical note for biological carbon offset projects is the notion of 

‘permanence’ where fire, logging and other hazards are regarded by the CDM rules (and other 

schemes) as risks that could lead to the reversal of stored carbon. The CDM regards biological carbon 

offsets as either ‘temporary’ or ‘long-term’, but not ‘permanent’ (as is the case with renewable energy 

projects) meaning that these credits will eventually expire and be unable to be traded on the market. 

The exclusive application of permanence to ecosystem carbon further encumbers investment into 

biological carbon offset projects (IETA 2009; Thomas et al, 2010), particularly when one considers 

the uncertainty associated with the impact of climate change on MGS C stocks. This aspect of carbon 

offset regulation needs to be reviewed if the co-benefits associated with biological projects are to be 

realised (Boyd et al 2009; Dutschke and Anglesen, 2008).                                       

Regardless of the aforementioned constraints and barriers, biological carbon offset offer considerable 

climate change mitigation and sustainable development opportunities, and under the right conditions 
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present attractive financial returns and enhanced socio-economic and environmental outcomes 

(Trumper et al, 2009). As is the case for Green and Blue Carbon, overcoming the barriers to these 

benefits will require due regard to conceptual research, capacity building and pilot project 

development and implementation (Thomas, 2011).  

In the case of conceptual research, the application of additionality and permanence as part of a future 

policy framework needs to be considered as to the specific ecological and economic characteristics 

of MGS C stocks. Likewise, building capacity will necessitate the strengthening of governance 

mechanisms to enhance credibility, and, establishing public-private partnerships and networks to 

improve technology transfer and access to markets and skills training programs. The development 

and implementation of a MGS carbon mitigation project could also support conceptual research and 

capacity building by providing a practical opportunity for global institutions and national 

governments to experimentally manage the various concerns identified above. This project will take 

all these aspects of climate policy into account when assessing MGS C as a viable carbon mitigation 

project that can potentially attract climate finance.  
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Chapter 3. Research questions & overarching methodology 

3.0 Research questions and overarching methodology 

3.1 Research objectives 

This thesis seeks to achieve the following broad research objectives: The extent, significance and 

economic value of carbon stored in mountain grasslands and shrublands, and the importance of this 

carbon pool for climate policy; the stressors on this carbon pool and the potential opportunities for, 

barriers to, and pathway forward to using climate finance to address these stressors.  

As for studies and reports looking at other ecosystems, understanding these aspects is critical if C in 

MGS ecosystems is going to be recognised for their importance to global climate change mitigation 

goals, and if climate finance is to be used to support NRM activities and more sustainable land use.   

3.2 Research questions 

This thesis will achieved these objectives by addressing the following three research questions: 

Research Question 1. What is the spatial distribution and significance of carbon stored in the 

world’s MGS? How is it accounted for in global carbon budgets and international carbon 

accounting frameworks? 

Research Question 2. To what extent is carbon globally exchanged between MGS and the 

atmosphere? How is this impacted by land use change? What is the economic value of these 

exchanges and the in-situ stock as a whole when considering climate policy and broader 

sustainable perspectives? 

Research Question 3. What are the stressors, NRM challenges and priorities related to carbon 

stocks in MGS? Why has climate finance not been utilized in this context? What is required to 

position these NRM activities eligible for carbon finance incentives, and in so doing, ensuring 

that MGS are more sustainably used and the aforementioned economic value is maintained and/or 

improved? 
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3.3 Methodology overview 

Addressing these research objectives involved three broad methodological stages, as highlighted in 

Figure 13 and as discussed below.  

Note: A detailed methodology for each stage is presented in each of the relevant chapters. 

  

  Figure 13. Overview of Methodology & Research Questions  

 

 

3.3.1 Stage 1  

Stage 1 (Chapter 4, Ward et al, 2014) initially involved a systematic quantitative literature review 

(Pickering and Byrne, 2014) to understand the current state of knowledge and the availability of data 

for MGS, with respect to geographical extent and C pools contained within biomass and soils. The 

literature review included the following sources: empirical studies; government policy and technical 

reports; spatial datasets; and, non-government organization reports, and, spatial datasets. Following 

this, GIS and spatial analysis was used to identify the geographical extent of MGS worldwide, and a 
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global estimate of in-situ carbon stocks. This approach was biogeographical in nature (Olson et al, 

2001), and resulted in the identification of 875 different MGS ecoregions worldwide e.g. Central 

Range Subalpine Grasslands and Sayan Alpine Meadows. This initial map was overlaid with 16,000 

individual Soil Mapping Units (representing 16 different soil types) derived from the Harmonised 

World Soil Database (HWSD) (FAO, IIASA, ISRIC, ISSCAS and JRC, 2012).  For each individual 

SMU, SOC was calculated for topsoil (0–30 cm depth) and subsoil (30–100 cm depth) using the 

empirically-based spatial data provided by HWSD at that location. Biomass C stocks were estimated 

using the GLC2000 spatial dataset (EC JRC, 2003). The last step in this stage, was to determine how 

robustly MGS C stocks is incorporated into international carbon accounting standards. To achieve 

this, 19 UNFCCC National Inventory Submissions (NIS) were evaluated in accordance with seven 

criteria with the aim of making a judgement on: (i) whether mountain MGS C had been estimated; 

(ii) and if so, were estimates wholly delineated into a separate category or consolidated within a 

broader category (e.g. ‘Grassland’ or ‘Other Land’); and (iii) whether a default IPCC or nationally 

derived emissions factor was used (Ward et al, 2014).  

In summary, this stage answered RQ1 through producing a map and accompanying dataset of the 

geographical extent of the world’s MGS, and the biological C (biomass and SOC) contained within. 

 

3.3.2 Stage 2  

Stage 2 (Chapter 5) built on Stage 1 and involved three sub-stages. The results of the literature review 

and spatial data outputs from Stage 1 provided the basis for GIS analysis, where additional datasets 

were overlayed and a number of calculations were run to determine a set of spatially-resolved input 

parameters. These inputs were used in a performance Individual Based Model (IBM) to estimate the 

monthly impact of LULUC on Net Primary Productivity (NPP) and soil loss, and the resulting 

influence MGS on net accumulations of C stocks (biomass and soil) and CO2 exchange dynamics 

between the years 2000 and 2015. Two different simulation scenarios were run. The first simulation 

scenario represented current land use regimes (BAU). The second simulation scenario provided an 

indication of the additional CO2 that could be sequestered if MGS were managed more sustainably. 

Finally, an economic assessment was undertaken by applying a range of economic values (at different 

discount rates) to the CO2 sequestration results of two different simulation scenarios, providing a 

conservative estimation of the economic value of MGS climate regulation based on avoided damage 

to society (using Social Cost of Carbon as a proxy). This estimate of economic value was provided 
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for the annual contribution that MGS make to climate regulation (net CO2 sequestration) and the 

value of total in-situ C stock in MGS ecosystems as at 31 December 2015 (the end of the model run).      

In summary, this stage answered RQ2 through modelling the influence of LULUC on MGS C stocks 

globally, and by estimating the economic contribution that MGS made in a climate regulation context. 

 

3.3.3 Stage 3  

Stage 3 (Chapter 6, Ward et al, 2015)  was undertaken concurrently with Stage 2, as it did not require 

Stage 2’s outputs to be completed. Stage 3 initially involved a survey of experts to obtain an insight 

into the priority NRM stressors for mountain grasslands and shrublands, and to ascertain how they 

judged their own understanding of carbon markets and climate finance. This qualitative survey 

method was indicative but not prescriptive. A survey was then used to identify the issues, priorities, 

and challenges facing natural resource managers and policy makers who are responsible for the NRM 

of mountain grasslands and shrublands, and to provide an understanding of the extent to which these 

experts have considered using carbon markets and climate finance to support NRM. The process for 

selecting an ‘expert panel’ of survey respondents was non-probabilistic and purposive, an approach 

deemed suitable for research where the objective is to understanding complex social phenomena 

(Marshall, 1996; Small, 2009) and where the sampling size is small but targeted (Gideon, 2012). 

Potential experts were initially identified through the Food and Agriculture Organisation (FAO) 

Mountain Partnership’s network of practitioners, as successful sampling requires ‘assembling a 

sample of persons with demonstrable expertise in given area’ (Gideon, 2012, p. 400). Experts were 

selected for the survey if publically available information confirmed they met five criteria. The final 

panel consisted of 20 experts from a range of organizations. Follow-up interviews were used to gather 

more detailed data. 

Finally, a literature review was used to verify the survey results and interview discussion.  The 

literature review was systematic and quantitative (Pickering & Byrne, 2014) and included examining 

secondary data sources (publically available databases and registries, government and non-

government reports, and peer-reviewed journal articles) covering (1) sustainable mountain 

development strategies; (2) climate policy documents, existing and pending carbon offset 

methodologies and projects; and (3) international climate change mitigation funds that were 

undersubscribed as of January 2015, and that could be used in supporting NRM activities in mountain 
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grasslands and shrublands. The literature review was conducted using online databases including 

Summon, Science Direct, the Web of Science, EBSCO, and ProQuest. The primary keyword search 

terms consisted of a combination of ‘mountain’, ‘montane’, ‘alpine’, ‘tundra’, ‘subalpine’, 

‘grasslands’, ‘shrublands’, ‘carbon’, ‘markets’, ‘funding’, ‘natural resource management’, ‘climate’, 

and ‘policy’. Secondary search terms included ‘climate change’, ‘biomass’, ‘soil’, ‘ecosystem 

services’, ‘environmental services’, and ‘ecological services’. All in all, this stage reviewed around 

2000 peer-reviewed journal articles, policy, and technical documents. 

In summary, this stage answered RQ3 through shedding light on how experts in sustainable mountain 

development understand the barriers, risks and opportunities associated with carbon markets and 

climate finance, and how they might be used to support specific NRM actions in MGS ecosystems. It 

also provides a systematic top-down conceptual policy framework for responding to these barriers 

and risks, with the aim of enabling climate finance to be used in an MGS context.   
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Chapter 4. A global estimate of carbon stored in mountain grassland and   

                  shrublands, and the implications for climate policy  

4.0 A global estimate of carbon stored in mountain grassland and the implica 

Ward, A. Dargusch, P. Thomas, S. Lui, Y. Fulton, E. 2014. A global estimate of carbon stored 

in mountain grasslands and shrublands, and the implications for climate policy. Global 

Environmental Change, 28:14 – 24. 

 

4.1 Chapter Summary 

In this chapter, spatial analysis is used to estimate that there is between 60.5 Pg C and 82.8 Pg of C 

contained within the biomass and soils of the world’s MGS. To put this in perspective, globally 

tropical Savannas and grasslands, temperate forests and tropical peatlands are estimated to contain 

326–330 Pg C, 159–292 Pg C and 88.6 Pg C respectively. A subsequent review of existing empirical 

studies and of United Nations Framework Convention on Climate Change (UNFCCC) national 

greenhouse accounts is presented, and suggests that this C is not reliably accounted for in international 

carbon budgets. This estimate is the first to provide a global point of reference, useful in developing 

future research and in climate policy discussions. This chapter concludes by briefly discussing how 

climate finance might be leveraged to support the sustainable management of these C stocks, and in 

so doing uphold the other important socioeconomic benefits provided to humanity. 

4.2 Introduction 

Nearly one quarter of the Earth’s landmass is covered by mountains which provide clean water to 

over 50% of the world’s population, shelter almost half of the world’s biodiversity ‘hot spots’, and 

afford important ecologically derived goods and services (Dixon et al, 1994; Kapos et al, 2000). Like 

mountain forests, healthy and well-functioning MGS (Figures 14 and 15) provide important benefits 

to humanity that are often unique due to the presence of steep slopes, extreme weather, and soil types.  
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Figure 14. Differentiation of different mountain ecosystems   

 
Source: Ward et al, 2014.  

 

Figure 15. Examples of mountain grasslands and shrublands  

Source: Ward et al, 2014.  

  



 

 
  62 

 

These services include downslope safety and stable arable terrain, high-quality water for drinking and 

energy generation, pasture for grazing, recreational opportunities, medicinal plants and a buffer 

against the spread of bushfires (Hassan et al, 2005; Worboys and Good, 2011). Critically, these 

ecological goods and services are relied upon by some of the most impoverished people in the world 

who are often marginalized due to cultural factors and remoteness (Gerlitz et al, 2012). They are also 

incredibly important in regions that rely on the ‘Alpine Economy’ (Ariza et al, 2013). One discretely 

important ecological service performed by these ecosystems is climate regulation. Carbon dioxide 

(CO2) is removed from the atmosphere and sequestered in the biomass of dwarf shrubs, heaths, alpine 

meadows, sages and other vegetation during a short but highly productive growing season, before 

that C is slowly stored in soil (Djukic et al, 2010). Though this process is relative slow due to tough 

growing conditions, over time significant amounts of C has accumulated in both the shallow (e.g. 

Leptosols) and deep soils (e.g. Histosols) of the world’s mountain ranges. While similar to soils 

located in lowland and boreal regions, mountain soils are subject to a number of additional factors 

including: historical intensive use by humans; especially in Central Europe; higher rainfall, thicker 

snow cover (insulation) and thus warmer winter ground temperatures; the prevalence of steep well-

drained slopes inhibiting widespread peatlands formation, and natural disturbances such as soil 

erosion, rock fall, spring snow thaw and avalanches (Hagedorn et al, 2010). The perception that 

mountains are remote, inaccessible and thus not under threat has contributed to government neglect 

and a lack of national and international conservation action (Ariza et al, 2013). In particular, the 

potential for more severe erosion make mountain soils more vulnerable to anthropogenic stressors 

(e.g. grazing) than their lowland and boreal equivalents. Moreover, studies have shown these soils, 

and the C contained within, are most effectively protected from erosion when there is overlying 

natural shrubland and grassland vegetation (Luz et al, 2002). 

Natural (and semi-natural) mountain grassland and shrubland vegetation is under increasing threat, 

mainly in developing countries where rapid population growth is contributing to the intensification 

of agriculture (e.g. potatoes and maize), the expansion of grazing, growth in tourism and expanded 

high-altitude mining (Körner et al, 2005). While many of these stressors are declining in wealthier 

nations, others, for instance the infiltration of exotic plant and animal species and the expansion of 

tourism infrastructure, are having a substantial impact on natural vegetation within protected areas 

(Booth and Cullen, 2001; Körner et al, 2005; Worboys and Good, 2011). These invasions are not 

disconnected from the greatest of pressures, climate change, which is projected to have a 

disproportionate influence at higher latitudes and altitudes (Schroter et al, 2005; Nogues-Bravo et al, 

2007). Many of the invading species are range extending, pushing up into alpine areas as lower levels 
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become warmer and less hospitable due to global warming (Benitson, 1994). While one might 

immediately ponder the potential C gains from a change in vegetation type (i.e. trees), 

counterintuitively, there is a growing body of evidence to suggest that the expansion of trees into 

mountain grassland and shrublands may actually result in a net loss of C due to a lower capacity of 

forests to support soil organic carbon (SOC) compared to tundra (Hartley et al, 2012; Qian et al, 

2010). The complex interaction of other factors, such as the suppression of indigenous burning 

regimes and introduction of grazing, can also lessen the extent of mountain grassland and shrubland 

vegetation, resulting in higher biomass loads, more frequent and intense fires, and the subsequent loss 

of additional SOC due to the erosion of exposed soils (Gross and Coppoletta, 2013). 

Mountain vegetation plays a critical role in the control of soil erosion. When this vegetation is 

degraded SOC becomes particularly vulnerable to erosive forces (such as rain, runoff, wind and 

gravity), risking eventual decomposition and therefore a strong negative impact on the global carbon 

cycle (Lal, 2003). Without stabilization this process is likely to accelerate and lead to a positive 

feedback relationship whereby heightened erosion causes loss of more vegetation, which in turn 

causes more erosion, and so on (Juying et al, 2009). The environmental conditions prevalent at 

altitude discussed above mean that erosion rates in the mountains can be at least three times that of 

the lowlands (Ariza et al, 2013). This powerful force degrades biodiversity values, ecological goods 

and services (e.g. water quality, slope stability and provision of medicinal plants) and local upland 

communities. Furthermore, erosion has been linked with severe socio-economic and political 

disturbance in downstream low-land communities (Egziabher, 1991; Lal, 2003). 

Damage to mountain vegetation and soils is often irreversible (Jansky et al, 2002) and there needs to 

be polices in place to encourage the conservation and restoration of the existing natural resource stock 

by ensuring mountain ecosystems remain healthy and more resilient to climate change and other 

stressors (Ariza et al, 2013). The establishment of protected areas is a widespread conservation 

strategy, but when implemented as a standalone policy it has been shown to be largely ineffective in 

managing these threats through creating economic disadvantage amongst local communities (Gaston 

et al, 2008). For mountains, trans- boundary and biophysical complexities provide further challenges 

for this approach. Moreover, the increasing shortage of available financial resources is repeatedly 

cited as one of the major constraints to arresting biodiversity loss (Waldron et al, 2013) and engaging 

in sustainable natural resource management (Worboys and Good, 2011). Therefore, the question here 

is ‘are there other non-traditional sources of funding that could support the sustainable management 

of mountain grassland and shrublands’? 
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It is well known that other ecosystems such as terrestrial forests, peatlands, lowland grasslands and 

shrublands, mangroves, and seagrass meadows store large amounts of C within biomass and soils 

(Beer et al, 2010; Dixon et al, 1994; Donato et al, 2011; Fourqurean et al, 2012; Scurlock and Hall, 

1998; Siikamaki et al, 2012). Carbon markets and climate finance schemes (such as the Clean 

Development Mechanism, REDD+, and the emerging US$100 billion Green Climate Fund) are being 

investigated for their role in protecting and replenishing C stocks while achieving enhanced 

sustainability outcomes (Alongi, 2011; Gibbs et al, 2007; Pendleton et al, 2012; Smith, 2010; Ullman 

et al, 2013). We propose that the same action be taken for MGS. Efforts to investigate how 

international carbon markets and climate finance may support marine ecosystems, existing forests 

and degraded lands are underpinned by studies estimating C stocks at a global level (Donato et al, 

2011; Fourqurean et al, 2012; Siikamaki et al, 2012). By contrast the distribution, extent, volume and 

density of mountain grassland and shrubland C pools remain largely unknown on a global scale. This 

presents a number of issues: one, it raises the question as to whether these C pools are adequately 

accounted for in the IPCC’s global carbon budget; two, without an accurate baseline of these C pools 

it is difficult to track and assess the potential ‘loss and damage’ arising from CO2 emissions due to 

anthropogenic stressors; and three, without a global perspective we cannot evaluate where and how 

carbon markets and climate finance might be used most effectively to address the aforementioned 

stressors, improve ecosystem resilience and arrest emissions from MGS. In meeting the UNFCCC’s 

ultimate objective of avoiding dangerous climate change, international climate policy will need to 

‘‘cover all relevant sources, sinks and reservoirs for greenhouse gases’’ (UNFCCC, 1992). Britton et 

al. (2011, p. 287) recognize this ‘‘urgent need’’ to ‘‘quantify the stocks of C’’ held in alpine 

ecosystems. 

Here we assemble the first global estimate of C stored in MGS. We present our review of existing 

literature, conduct a comprehensive Geographical Information System (GIS) analysis, and show that 

C stocks in these ecosystems (ecoregions) are neither accurately nor adequately accounted for in 

Annex I country UNFCCC national accounts. Finally, we briefly discuss ways in which carbon 

markets and climate finance might be leveraged to support conservation while considering sustainable 

development outcomes for some of the world’s poorest people. Ultimately our aim is to bridge the 

nexus between climate policy and MGS by providing a sound reference point that will serve to 

underpin future scientific and economic studies, and encourage climate policy discourse – a precursor 

to leveraging carbon markets and climate finance. 
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4.3 Materials and methods 

Mountain grasslands and shrublands 

While prevalent in the treeless alpine altitudinal belt, MGS can also form communities of similar 

endemic plant species around the stunted trees of the subalpine transitional zone, and below within 

the forests and woodlands of the montane altitudinal belt, due to a number of localized natural 

phenomenon (e.g. frost hollows) and anthropogenic factors e.g. the influence of exotic herbivores 

(Körner et al, 2005; Benitson, 1994; Worboys and Good, 2011; WSDNR, 2011). This is illustrated 

in Figure 14 with photographic examples of vegetation and locations provided in Figure 15. 

We undertook a systematic quantitative literature review (Pickering and Byrne, 2014) using online 

databases including Summon, Science Direct, the Web of Science, EBSCO, and ProQuest. The 

purpose of the review was to understand the current state of knowledge and the availability of data 

for MGS, primarily in relation to their geographical extent and C pools. In order of priority, the review 

sought to identify the following sources: (a) empirical studies; (b) government policy and technical 

reports, and, spatial datasets; and (c) non-government organization reports, and, spatial datasets. 

These databases covered the major literature sources across the biological, geographical, and social 

sciences, along with governance, policy and GHG reporting. The primary keyword search terms 

consisted of a combination of ‘carbon’, ‘mountain’, ‘montane’, ‘alpine’, ‘tundra’, ‘subalpine’, 

‘grasslands’, ‘shrublands’. Secondary search terms included ‘climate change’, ‘biomass’, ‘soil’, 

‘ecosystem services’, ‘environmental services’ and ‘ecological services’. 

Estimating the spatial distribution of mountain grasslands and shrublands 

We used GIS spatial analysis to identify natural and semi-natural MGS areas worldwide (Figure 16). 

Our analysis primarily used two readily available datasets (UNEP-WMCM, 2000; WWF, 2004) to 

determine the global extent of montane grassland and shrubland ecoregions. Ecoregions represent 

areas of land (150,000 km2 on average) that contain ‘‘a distinct assemblage of natural communities 

and species, with boundaries that approximate the original extent of natural communities prior to 

major land-use change’’ (Olson et al, 2001, p. 933). Traditional biophysical models, such as 

Holdridge Life Zones (which is widely used in climate impact studies today), have been shown to 

poorly represent how natural vegetation responds to climate change in comparison to biogeographical 

models (Yates et al, 2000). This may be because such models only take into account average 

precipitation and biotemperature, and ignore seasonal variations. 
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Testing of the Holdridge Life Zones model has also shown it to misrepresent or even omit transitional 

mountain vegetation zones such as shrub-steppe (Yates et al, 2000). Ecoregions, by contrast, are 

‘‘built on the foundations of classical biogeography. . .’’ and thus ‘‘. . .are likely to reflect the 

distribution of species and communities more accurately than do units based on global and regional 

models derived from gross biophysical features’’ (Olson et al, 2001, p. 933). Where spatial data was 

available, we sought to improve geographical coverage by adding smaller and more fragmented 

montane, subalpine and alpine grasslands and shrubland areas which are common in continental 

Europe, the United Kingdom and North America (Alberta Parks, 2009; Benitson, 1994; European 

Environmental Agency, 2012; IPCC, 2003; Natural England, 2012; US EPA, 2011; WSDNR, 2011). 

Ecoregions represent larger land size units than ecosystems, but both are constructed using the same 

biogeographical criteria. Ecoregions, also known as bioregions, can be thought of as a repetitive 

pattern of ecosystems that have common regional soil and landform characteristics (Brunckhorst, 

2000). 

We identified 875 different ecoregions including Northern Andean Páramo, East African Montane 

Moorlands, Central Range Subalpine Grasslands, European Calcareous Grasslands, Sayan Alpine 

Meadows and Tundra, and Central Tibetan Plateau Alpine Steppe, using GIS (Table 1). This dataset 

was ‘clipped’ using UNEP-WMCM’s (2000) dataset which defines the extent of Earth’s mountain 

zones based on slope and local elevation range (Kapos et al, 2000). We then applied a spatial filter to 

this dataset in order to remove ecoregions located in the subalpine and montane altitudinal belts 

predominantly populated by forests and woodlands, those denoted as ‘rock and ice’, and montane 

forest-grassland mosaics where the grassland/ shrubland to forest ratio was uncertain. We manually 

removed any spatial data relating to ‘‘arctic tundra’’ ecoregions in the arctic mountain areas in order 

to exclude C stocks that have already been estimated in other studies (Ping et al, 2008; Walker et al, 

2005). Mountain ranges located in Turkey, Iran, Liechtenstein, the Antarctic and a number of small 

remote islands (e.g. Heard Island) were excluded due to the lack of reliable spatial data. 
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Figure 16. Overview of GIS procedures undertaken 

Source: Ward et al, 2014.  

 

 

Table 1. Summary of empirical studies on C storage in mountain grasslands and shrublands 

 

Mountain Area / Country 

C stocks density range per 

hectare  

(t C ha-1) 

Reference 

Global (no specific mountain range) 40-207 Schlesinger 1977 

Sierra Nevada, USA 156-191 Norton et al 2011 

Rocky Mountains, USA 60-70 Seastedt, 2011 

Scottish Highlands, UK 115-498 Britton  et al 2011 

Alps, Austria 133-385 Djukic et al 2010 

Alps, Switzerland 53-115 Leifeld et al 2009 

Alps, Austria 14 - 140 Körner C et al 1993 

Alps, Switzerland and Austria 40-220 Körner & Thompson 2003 

Pyranees, Spain 59-299 Garcia-Pausus et al 2007 

Hallingskarvet, Norway 207 (No Range) Martinsen et al 2011  

All, China 140-207 Ni 2002 

Tibetan Plateau, China 31-290 Wang et al 1998 

Tibetan Plateau, China 12-565 Wang et al 2002 

Tibetan Plateau, China 10-137 Ohtsuka et al 2008 

Southern Alps, New Zealand 16-56 Landcare Research 2012 

Andes, Columbia 135-521 Pena et al 2011 

Andes, Columbia 259-486 Hofstede et al 2003 

This study 15-530  

   Range                                     10-565 

 

    Source: Ward et al, 2014.  
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Determination of soil and biomass C stocks (including uncertainty estimates) 

We overlaid our mountain grassland and shrubland ecoregion spatial dataset with the soil mapping 

data extracted from the Harmonized World Soil Database (HWSD). This resulted in over 16,000 

individual Soil Mapping Units (SMUs). The SMUs measure bulk density and SOC to one metre depth 

at 1 _ 1 km (30 arcsec) resolution for 26 soil types as defined by the Food and Agriculture 

Organisation (FAO) (FAO, IIASA, ISRIC, ISSCAS and JRC, 2012). The HWSD was chosen over 

other datasets (such as outputs from CMIP5 based earth systems models) because: (a) it has been 

shown to produce more conservative estimates of global SOC stocks (Todd-Brown et al., 2013); and 

(b) it has been deemed suitable for making broad-scale SOC assessments as per IPCC Tier-I 

guidelines (Batjes, 2010). For each individual SMU we computed SOC separately for topsoil (0–30 

cm depth) and subsoil (30–100 cm depth) layers using the following equation (Hiederer and Kochyl, 

2011): 

 

where SOCS is the total amount of soil organic carbon to given depth (t ha-1), SOCC is the soil organic 

carbon content for given depth (%), BD is the dry bulk density (g cm3), VS is the volume of stones 

(%), and LD is the depth of soil layer (m). Note: as SOCC was provided in %, it was divided by 100 

to give t C ha-1. This data was aggregated at a national level. Normal probability distribution based 

uncertainty analysis has not been performed as the required data points (i.e. sample size, minimum 

and maximum estimates) were not readily available and would be a substantial challenge to obtain 

(Todd-Brown et al, 2013). Instead, we adopted a triangular fuzzy number framework to make 

uncertainty estimates for the 26 FAO soil types we included in this study. Fuzzy number frameworks 

have been used in conservation biology applications where the degree of measurement error is 

unknown (AkCakya et al, 2000). Triangular probability distributions were constructed by 

determining the ‘minimum’ (a), ‘maximum’ (b) and ‘best estimate’ (c) value for each FAO soil type. 

The ‘minimum’ and ‘maximum’ values were allocated based on the soil type C density values from 

the HWSD database. The ‘best estimate’ value was allocated based on the mean C density spatial 

output value from the GIS procedure. Where the FAO database contained no data for a particular 

location, we applied the mean C density emissions factor from the relevant empirical study (Table 1).  
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The triangular probability density function is given below: 

 

We used these triangular distributions to develop uncertainty estimates which we applied nationally 

(by FAO soil type) to give an overall uncertainty for density (t C ha_1) and a range for absolute SOC 

stocks.  

To estimate biomass stocks we utilized the Global Landscape Cover (GLC) 2000 database (JRC, 

2003) which contains IPCC-Tier I compatible data on aboveground and belowground biomass (t C 

ha-1) for 124 different aboveground living biomass carbon zones (Ruesch and Gibbs, 2008). The 

GLC2000 is the product of a joint collaboration between the Joint Research Centre of the European 

Commission and more than 30 institutions from around the world. It is used as the core dataset for 

the Millennium Ecosystem Assessment and provides a bottom-up approach using data from Earth 

Observing Satellites and the Land Cover Classification System developed by the FAO. A recent 

accuracy assessment of GLC2000 found the product to have an overall accuracy of 68.6% (Mayaux 

et al, 2006). We adopt this figure here as the basis for our uncertainty estimates for biomass C and 

combined these values with those for the FAO database discussed above to give an overall uncertainty 

estimate for each country (ESRI, 2011) and also globally. A full list of GIS data used can be found 

in Table 5. 

Quality Control 

Quality control (QC) consisted of automated and manual procedures performed throughout the GIS 

analysis according to a QC checklist and broader Quality Assurance plan. Initially ArcGIS 

geoprocessing tools (e.g. ‘Check Geometry’, ‘Repair Geometry’ and ‘Import and Clean Lines’) were 

used to check and (where necessary) repair datasets. Record-by-record manual checks of all ‘Attribute 

Tables’ were then undertaken to ensure all non-relevant ecoregions (as discussed above) were 

removed from both the source datasets and the final dataset. Other manual QC checks included 

comparing feature counts between the source datasets and the final dataset, assessing outliers, 

confirming that duplicate records were removed, checking for poorly formed geometry, evaluating 
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sliver polygons (very small polygons resulting from overlay analysis, as used by this study), and, 

ensuring carbon calculation formulas were correctly applied. All-in-all more than 221,000 records 

were checked manually. 

Review of UNFCCC reports and estimates 

It is not possible to directly compare our estimates to those in other studies, as none are available at 

a global scale. However, we can take a qualified approach to review national GHG accounts to 

understand the extent to which this C is captured. The UNFCCC reporting process requires Annex I 

countries to compile national greenhouse inventories on an annual basis (SBSTA, 2006). These 

reporting requirements include a section on Land Use Land Use Change and Forestry (LULUCF) and 

a subsection specific to Grasslands (IPCC, 2003). Annex I countries report using a standardized 

Common Reporting Format (CRF) and may utilize default emissions factors in the absence of country 

specific data. We methodically evaluated 19 National Inventory Submissions (NIS) for 2013 for 

relevant Annex I countries to determine the degree to which each had referenced data sources and 

estimates specific to national MGS. Our focus was on three areas: (i) whether mountain MGS had 

been estimated; (ii) and if so, were estimates wholly delineated into a separate category or 

consolidated within a broader category (e.g. ‘Grassland’ or ‘Other Land’); and (iii) whether a default 

IPCC or nationally derived emissions factor was used. In order to judge the level of reporting we 

evaluated each NIS against the following seven criteria. These criteria reflect what we would deem 

to be ‘‘reliable reporting’’ for C stocks in MGS at a national level when considering the UNFCCC’s 

ultimate objective (discussed in Section 4.2). In this context, we considered ‘‘reliability’’ to be of 

crucial importance (Golafshani, 2003). 

I. Clear delineation from other land categories: whether MGS were explicitly delineated from 

other LULUCF land categories in the NIS report i.e. ‘‘Grasslands’’ and ‘‘Other Lands’’;  

II. Estimate of geographical extent: whether a discrete estimate of the spatial extent (e.g. 

hectares) of MGS was provided in the NIS report;  

III. Estimate of C stocks: whether a discrete estimate of C stocks for MGS was provided in the 

NIS report;  

IV. Relevance of underlying data: whether the empirical studies or data used (e.g. GIS) was 

specific to MGS;  

V. Underlying data: whether the empirical studies or data used was relatively recent and therefore 

likely to reflect the current situation (e.g. taking into factors such as land use change);  
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VI. Geographical coverage: whether spatial estimates were likely to be a complete geographical 

representation of MGS for that country; and  

VII. Appropriateness of emissions factors: whether the emissions factors or data underlying the 

estimate of C stocks suitably accounted for the location and type of mountain grassland and 

shrubland ecosystem reported on. Estimates based on spatial data, such as provided by the 

HWSD, constituted the highest level of appropriateness in the absence of a geographically 

specific empirical dataset. 

Using our newly developed global dataset we identified the following Annex I countries containing 

MGS, forming the basis of our review: Australia, Austria, Bulgaria, Canada, Finland, France, Italy, 

Kazakhstan, New Zealand, Norway, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, 

Switzerland, United Kingdom of Great Britain and Northern Island, and, United States of America. 

We did not evaluate Non-Annex I countries as there was very little detail available from the UNFCCC 

(i.e. submitting NIS reports is not currently a requirement under the convention). Given the mandated 

use of the CRF, our assumption was that Annex I NIS reports would provide a strong indication of 

the overall level of reporting for MGS at a global level. 

 

4.4 Results 

Our literature review identified 18 studies on C storage in MGS (Table 2). Generally these studies 

were species-specific, small in scale, or focused on a narrow set of locations. However, what these 

studies show is that C stocks are substantial in many locations and therefore potentially of global 

significance compared to other ecosystems. For example, mountains adjacent to coastal areas exhibit 

very large amounts of C per hectare (up to 498 t C ha-1) due to the moist oceanic-alpine environment 

(Britton et al, 2011). In the Andes Mountains in South America C stocks can be between 239 and 479 

t C ha-1, owing to the presence of high-density Páramo vegetation and carbon rich soils (Hofstede et 

al, 2003). In other high-mountain regions C stocks show a much higher variability, for example the 

Qinghai-Tibetan Plateau exhibits between 15 and 548 t C ha-1 (Wang et al, 2002) and the European 

Alps between 14 (Körner, 2003) and 385 t C ha-1 (Djukic et al, 2010) due to the localized effects of 

slope, temperature, rainfall, and wind (Körner, 2004). 

Our global analysis shows that MGS are estimated to cover an area of 9.38 million km2 of land. We 

estimate that these ecoregions contain between 60.5– 82.8 Pg C, 98.1% of which is contained within 
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the top 1 m of soil, the remainder in the aboveground and belowground biomass. Table 2 provides a 

snapshot of absolute C stocks (and uncertainty estimates) for 64 of the world’s mountain countries 

where MGS represent substantial ecoregions. These estimates are both more specific and of greater 

resolution compared to other widely used models e.g. Holdridge Life Zones. As discussed above, 

ecoregions are founded in biogeographical science and take into account a much wider set of 

parameters that can influence their spatial distribution. We also estimated the mean C density rate 

(Table 2) to be between 15 and 685 t C ha-1 (mean 86.5-14.8 t C ha-1) which is presented as a global 

map in Figure 17. Taking into account outliers, the nominal range is between 15 and 538 t C ha-1 and 

falls within the range provided by the studies listed in Table 1 (10-548 t C ha-1). This range is 

comparable to average C intensity rates in temperate and tropical forests on non-peatlands of between 

150 and 321 t C ha-1 (Rose and Sohngen, 2011) and sea grass meadows at between 9 and 628 t C ha-

1 (Fourqurean et al, 2012), but less than for mangroves at between 101 (Pendleton et al, 2012) and 

1074 t C ha-1 (Donato et al, 2011). When compared to existing studies (Table 1) our estimates are 

likely to be at the lower end of the range, but until more empirical research is available we judged it 

appropriate to take a conservative approach. 
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Table 2. National estimates of carbon stored in mountain shrubland and grassland ecoregions 

Source: Ward et al, 2014.  

 

 



 

 
  74 

 

Figure 17. Global distribution and C storage of mountain grasslands and shrublands. 

Source: Ward et al, 2014.  

 

Our review of reporting for C in MGS by UNFCCC Annex I countries revealed a number of 

accounting issues. First and foremost, most Annex I countries did not report these C stocks in a robust 

and reliable manner. Five of the 19 (26 percent) 2013 NIS reports reviewed provided no C estimate 

at all. This exclusion was either explicitly stated in the NIS, or by virtue by the fact that there was 

simply no estimate provided for ‘Grassland’ and/ or ‘Other Land’ (IPCC categories in which these C 

stocks would fall). This was particularly the case with ‘Other Land’ where the category description 

extended to mountain ecosystems, and, which was generally not evaluated for C. We also discovered 

that seven countries (36 percent) did not discretely include MGS, but may have consolidated these C 

stocks within the ‘Other Land’ categories. However, those MGS falling within ‘Other Land’ were 

generally deemed ‘unmanaged’ and thus not reported (Cowie et al, 2007). In any case, if these C 

stocks had been included a default IPCC factor was used in the calculation. New Zealand and the 

United Kingdom provided more reliable estimates however in both instances either there was no 

delineation from the broader categories such as ‘Grassland’, or, that the emissions factors used were 

not nationally/ecologically specific. Austria and Switzerland provided the most reliable estimates as 
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the area of MGS was well defined and emissions factors were based on locally focused empirical 

studies. A key limitation however was that SOC was only estimated for 0–50 cm and 0–30 cm 

respectively. Overall, we found that C stocks were either poorly calculated, or not calculated at all, 

thus generally unreliable considering the UNFCCC’s objective discussed below. The ability that 

Annex I countries have to select which LULUCF sources to include or exclude in their NIS reports 

is likely to be a major reason as to why this data is incomplete. In general, the reporting of greenhouse 

gases emissions and sinks amongst Non-Annex I countries is typically less reliable compared to 

Annex I countries (Gibbs et al, 2007; Umemiya et al, 2010), thus we can assume that it is highly 

unlikely that these mountain grassland and shrublands are reliably accounted for in international 

carbon inventories due principally to the lack of GHG reporting capacity (Cowie et al, 2007). 

 

4.5 Discussion 

Mountain grasslands and shrublands and the carbon accounting gap 

Current studies on C stocks in MGS are geographically limited so we developed a global estimate 

using GIS with the intent of filling this knowledge gap. In the process we discovered that this C store 

is not adequately accounted for in international carbon accounts. MGS C was only discretely 

accounted for by two (out of 19) Annex I countries and in both cases C estimates were made by 

applying a representative emissions factor (t C ha-1) to an area size (ha) for a narrow range of mountain 

grassland and shrubland ecosystem types. The application of generic emissions factors is problematic, 

as the results are accompanied by a high level of uncertainty (Gibbs et al, 2007). This is because, 

unlike our GIS-based spatially explicit estimates, the use of generic factors does not take into account 

important variations within each category (e.g. soil type and land-use history). Consequently, our 

estimates are the first to provide a spatially based global inventory for C stored in MGS. Moreover 

they offer much higher resolution and a greater accuracy than currently available. Due to their 

foundations in biographical science our estimates offer a higher degree of accuracy than those used 

by the IPCC models e.g. Holdridge (Olson et al, 2001; Yates et al, 2000). 

The implications for international climate policy 

Understanding the degree to which these estimates are already captured in international carbon 

accounting is of high importance when considering issues such as double-counting and tracking 

progress towards international mitigation targets. The UNFCCC explicitly states that its objective ‘‘is 
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to stabilize greenhouse gas (GHG) concentrations in the atmosphere at a level that would prevent and 

reduce dangerous human-induced interference with the climate system’’ and that ‘‘the ability of the 

international community to achieve this objective is dependent on an accurate knowledge of GHG 

emissions trends, and on our collective ability to alter these trends’’ (UNFCCC, 2013). Despite the 

inherent uncertainties involved with carbon in ecosystems, to build useful knowledge of emissions 

trends it is first necessary to establish reliable baselines against which they can be measured (Alongi, 

2011). By their nature, MGS are located within extremely dynamic and heterogeneous environments 

influenced by steep slopes, high altitude, aspect effects, rainfall, soil type and land use history. Thus, 

in order to provide an accurate measure of the C within these ecosystems we must recognize the 

differing characteristics from their low-land equivalents. In addition, building political will and 

determining what types of policy interventions might be suitable to these mountain ecosystems will 

require high resolution for the specific situation and challenges at hand (Gibbs et al, 2007). Lin et al 

(2014) highlighted that (biophysically specific) GIS information is also particularly useful in climate 

policy formation, whereby tools such as ‘multi-criteria decision making analysis’ and ‘spatial 

targeting’ can aid in determining where climate finance might be most efficiently and effectively 

targeted e.g. areas of the highest C density and greatest co-benefits. 

Our estimate of 60.5–82.8 Pg C stored in MGS is not insignificant. To put this in perspective, globally 

tropical Savannas and grasslands, temperate forests and tropical peatlands are estimated to contain 

326–330 Pg C, 159– 292 Pg C and 88.6 Pg C respectively (IPCC, 2001; Page et al, 2011). We also 

note that this is more than three times the C estimated to be contained within Blue Carbon ecosystems 

(Donato et al, 2011; Fourqurean et al, 2012; Siikamaki et al, 2012). In recent decades marine and 

coastal ecosystems have also been impacted by anthropogenic stressors, with scientists and policy-

makers creating institutions, expanding research and developing specific carbon baseline and 

abatement calculation methodologies in order to leverage financial opportunities created by climate 

finance and carbon markets with the intention of funding ecosystem restoration and protection 

(Ullman et al, 2013).  

International climate finance pools are substantial, with a recent study valuing annual investment at 

US$343–385 billion (Buchner et al, 2012). Moreover, the UNFCCC is establishing its Green Climate 

Fund, which aims to provide US$100 billion per annum by 2020 to support climate change mitigation 

and adaptation projects in developing countries. It is also worth noting that there is around US$27 

billion in carbon offset units traded annually on international carbon markets (World Bank, 2012). 

‘Blue Carbon’ advocates are seeking to tap into these funds by developing carbon offset projects that 
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sequester or avoid emissions in the LULUCF sector by either planting new mangroves, or, through a 

REDD+ type model that conserves existing C stocks e.g. not clearing mangroves for fish farms 

(Ullman et al, 2013). Similarly in the rangelands realm, Booker et al (2013) suggests that climate 

policy and rangeland management activities focus on the long-term retention of C stocks (and the 

broader socioecological benefits) in grassland ecosystems via conservation.  

In this view, we propose that similar climate policy mechanisms be investigated for MGS. While we 

have initiated this process with our global estimates, operationalizing such mechanisms would be a 

lengthy process, requiring the expansion of empirical studies, capacity building, and the establishment 

of new institutions, governance structures and technical methodologies (amongst other requirements). 

There are also other considerations surrounding carbon and biodiversity which need to be addressed 

in order to meet enhanced socioecological outcomes (Thomas et al, 2013). The reasons to do so 

though are compelling. Firstly, climate finance pools are expected to increase substantially in the 

coming years. Natural resource managers are in need of additional financial resources to effectively 

manage mountain grassland and shrubland ecosystems against the aforementioned stressors; not 

taking advantage of these funding streams would be a missed opportunity. Second, of the 64 nations 

for which we estimated C stocks for, 25 have recently been assessed as underfunded for biodiversity 

conservation (Table 2, note ’c’) (Waldron et al, 2013). Moreover, 12 of the 64 nations listed are 

categorized as Least Developed Countries (LDCs) (Table 2). The role that climate finance and carbon 

markets might play in climate mitigation and adaptation, environmental stewardship and sustainable 

development has become increasingly important for LDCs in recent years. When carefully considered 

and implemented, carbon mitigation can act as an effective proxy wherein the conservation and 

restoration of these C stocks maintains other ecological goods and services e.g. biodiversity 

(Lawrence, 2012; Thomas et al, 2013). 

 

4.6 Conclusion 

MGS have distinct biophysical features (e.g. steep slopes) and associated ecological services 

compared to their lowland equivalents (e.g. slope stability); are relied upon by some of the world’s 

most vulnerable people; and have a strong influence on the quality (and cost) of water available to 

downstream communities for irrigation, drinking, energy generation and other industrial processes. 

There are many stressors on these ecosystems. The most immediate of these include agricultural 

intensification, the infiltration of exotic pest species, and, the rapid growth of tourism and associated 
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infrastructure. In the medium to long-term, the greatest stressor is likely to come from anthropogenic 

climate change. Understanding, conserving and restoring these ecosystems is of critical importance. 

Healthy ecosystems are also more resilient to these stressors and more capable of arresting negative 

impacts e.g. erosion. By our estimates, there is a substantial amount of C stored in MGS that is not 

reliably accounted for in the international carbon budget. Our recommendation is that this study be 

used to strengthen UNFCCC national carbon inventory estimates for mountain shrublands and 

grasslands, and in so doing, improve the tracking of effective action on climate change at an 

international level. Lastly, we recommend that the results of this study also be used to assess the role 

of climate mitigation and adaptation funding in the sustainable management of these important 

resources. 

 

4.7 Supplementary information 

Figure 18. International accounting for C stored in MGS ecosystems 

 
This figure shows the likelihood that C estimates for mountain grassland and shrublands are included in the 

relevant UNFCCC NIS report. It also highlights the accuracy of national C estimates. For example, countries 

shown in the top right most square are likely to include the most accurate estimates of C stocks based on the 

application of mountain/country specific emissions factor (EF) to delineated area (ha) estimates for mountain 

grassland and shrubland ecosystems. By contrast, countries in the middle square are not likely to present an 

accurate estimate because these ecosystems have been included within broader categories (e.g. ‘Grasslands’) and 

thus have been estimated using a default emissions factor that is non-specific to mountain ecosystems. Available 

at: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/7383.php 
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Table 3. MGS ecoregions considered by this study 
Country Ecoregion 

 
Afghanistan Sulaiman Range Alpine Meadows, Ghorat-Hazarajat Alpine Meadows, Northwestern Himalayan Alpine Scrub (et 
Angola Angolan Montane Grasslands 

Argentina Southern Andean Steppe, Central Andean Puna, High Monte, Southern Andean Steppe 

Australia Australian Alps Montane Grasslands 
Austria European Alps Alpine Meadows 

Bhutan Eastern Himalayan Alpine Shrub & Meadows, Yarlung Tsangpo & Steppe 

Bolivia Central Andean Puna, Central Andean Wet & Dry Puna,  
Bulgaria Rila & Pirin Mountain Alpine Meadows 

Canada Pacific Coastal Mountain Ice fields & Tundra, Davis Highlands Tundra, Ogilvie-Mackenzie Alpine Tundra Alaska-St Elias Range Tundra, 

Rocky Mountain alpine meadows, Torngat Mountain Tundra 
Chile Southern Andean Steppe, Central Andean Dry Puna 

China Tian Shan Montane Steppe and Meadows, South East Tibet Shrublands & Meadows, Tibetan Plateau Alpine Shrublands & Meadows, Central 

Tibetan Plateau Alpine Steppe, Quilian Mountains Subalpine Meadows, Altai Alpine Meadow & Tundra, Eastern Himalayan Alpine Shrub & 

Meadows, Ordos Plateau Steppe, Yarlung Tsangpo Arid Steppe, Western Himalayan Alpine Shrub & Meadows, North Tibetan Plateau-

Kunlun Mountain Alpine Desert, Pamir Alpine Desert & Tundra 

Columbia Northern Andean Paramos - Cordillera Central páramo, Santa Marta páramo, Cordillera de Merida páramo, Northern Andean Páramo. 
DR Congo Rwenzori-Virunga Montane Moorlands 

Ecuador Northern Andean Páramo, Cordillera Central Páramo 

Eritrea Ethiopian Montane Grasslands 
Ethiopia Ethiopian Montane Moorlands, Ethiopian Montane Grasslands & Shrublands 

Finland Low Alpine Grasslands 

France European Alps Alpine Meadows 
Germany Eastern Alps Subalpine & Alpine Meadows 

Greenland Kalaallit Nunaat High Arctic Tundra 
India Eastern Himalayan Alpine Shrub & Meadows, Northwestern Himalayan Alpine Shrub & Meadows, Karakoram-West Tibetan Plateau Alpine 

Steppe, Central Tibetan Plateau Alpine Steppe 

Indonesia Central Range Subalpine Grasslands 
Italy European Alps & Dolomites Alpine Meadows  

Kazakhstan Tian Shan Montane Steppe & Meadows, Altai Alpine Meadow & Tundra 

Kenya East African Montane Moorlands 

Kyrgyzstan Tian Shan Montane Steppe &Meadows, Pamir Alpine Desert & Tundra 

Lesotho Drakensberg Montane Grasslands, Highveld Grasslands 

Madagascar Madagascar ericoid thickets 
Malawi Southern Rift Montane Grasslands 

Malaysia Kinabalu Montane Alpine Meadows 

Mongolia Altai Alpine Meadows & Tundra, Khangai Mountain Alpine Meadow 
Morocco Mediterranean High Atlas Juniper Steppe 

Mozambique Eastern Zimbabwe Montane Grasslands, Southern Rift Montane Grasslands 

Myanmar (Burma) Eastern Himalayan Alpine Shrub & Meadows 
Nepal Eastern Himalayan Alpine Shrub & Meadows, Western Himalayan Alpine Shrub & Meadows 

New Zealand South Island Montane Grasslands 

Nigeria Jos Plateau Grasslands  
Norway Scandinavian Montane Grasslands 

Pakistan Sulaiman Range Alpine Meadows, Northwestern Himalayan Alpine Shrub & Meadows, Pamir Alpine Desert & Tundra, Karakoram-West 

Tibetan Plateau Alpine Steppe 
Papua New Guinea Central Range Subalpine Grasslands 

Peru Central Andean Puna (Wet & Dry), Cordillera Central Páramo 

Poland Tatra Mountain Alpine Grasslands 
Romania  Făgăraş Montane Grasslands 

Russian Federation Cherskii-Kolyma Mountain Tundra, Trans-Baikal Bald Mountain Tundra, Kamchatka Mountain Tundra 

Rwanda Rwenzori-Virunga Montane Moorlands 
Slovakia Tatra Mountain Alpine and Subalpine Grasslands 

Slovenia Slovenia Alps Alpine Meadows 

South Africa Drakensberg Montane Grasslands, Highveld Grasslands 
Spain Pyrenees Alpine Meadows 

Sudan Ethiopian Montane Grasslands 

Swaziland Drakensberg Montane Grasslands 
Sweden Scandinavian Montane Grasslands 

Switzerland Montane, Subalpine and Alpine Grasslands 

Tajikistan Pamir Alpine Desert & Tundra, Hindu Kush Alpine Meadow, Karakoram-West Tibetan Plateau Alpine Steppe 
Tanzania East African Montane Moorlands, Southern Rift Montane Grasslands 

Uganda Rwenzori-Virunga Montane Moorlands, East African Montane Moorlands 

United Kingdom Upland Calcareous Grasslands 

United States Brookes British Range, Interior Yukon-Alaska Alpine Tundra, Alaska-St. Elias Range Tundra, Pacific Coastal Mountain Tundra, Sierra-

Nevada Alpine and Subalpine meadows, Rocky Mountain Alpine and Subalpine meadows, Wasatch Montane Grasslands, Ogilvie-MacKenzie 

Alpine Tundra, Davis Highlands Tundra 
Uzbekistan Tian Shan Montane Steppe & Meadows, Pamir Alpine Desert & Tundra 

Venezuela Northern Andean Páramo, Cordillera de Merida Páramo 

Zambia Southern Rift Montane Grassland 
Zimbabwe Eastern Zimbabwe Montane Grassland 
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Table 4. Ecoregion source data 

Name Description References 
Date 

Published 

Spatial 

Resolution/Scale 

Geographical 

Coverage 

Datasets used to identify and delineate  major ecoregions 

WWF_Ecoregions Depicts the 825 terrestrial ecoregions of the globe, based on the 
work of Olsen et al (2001). Dataset distributed by WWF.  

Olson et al, 2001, WWF, 
2004 

2004 1km / 30 arc seconds Global 

Mountain_and_Forests_in_Mountains_2000 Digital Elevation Model (DEM) developed by UNEP-WCMC that 

identifies global mountain area based on local elevation range and 
slope. Analysis by Kapos et al (2000).     

Kapos et al, 2000, UNEP-

WCMC, 2000 
2000 1km / 30 arc seconds Global 

Datasets used to identify smaller ecoregions (e.g. Level IV) and other conservation planning units 

ESAs2009 Environmentally Significant Areas (ESAs), Provincial Update 2009. Alberta Parks, 2009 2009 1:1000,000 Canada  
Ca_eco_l4 Level IV ecoregions for California, USA.  US EPA, 2011 2009 1:250,000 USA 

Co_eco_l4 Level IV ecoregions for Colorado, USA. US EPA, 2011 2009 1:250,000 USA 

Mt_eco_l4 Level IV ecoregions for Montana, USA. US EPA, 2011 2009 1:250,000 USA 
Nv_eco_l4 Level IV ecoregions for Nevada, USA. US EPA, 20111 2009 1:250,000 USA 

Nm_eco_l4 Level IV ecoregions for New Mexico, USA. US EPA, 2011 2009 1:250,000 USA 

Or_eco_l4 Level IV ecoregions for Oregon, USA. US EPA, 2011 2009 1:250,000 USA 
Ut_eco_l4 Level IV ecoregions for Utah, USA. US EPA, 2011 2009 1:250,000 USA 

Wa_eco_l4 Level IV ecoregions for Washington State, USA. US EPA, 2011 2009 1:250,000 USA 

Wy_eco_l4 Level IV ecoregions for Wyoming, USA. US EPA, 2011 2009 1:250,000 USA 
Upland_Calcareous_Grassland_v2_1 Describes the geographic extent and location of upland calcareous 

grassland priority habitat in England. 
Natural England, 2012 2012 10-100m United Kingdom 

Natura2000_End2011 Natura 2000 is an ecological network of designated conservation 
sites in Europe.   

European Environment 
Agency, 2012.   

2012 1:100,000 Continental Europe 

NVC_SCOTLAND 
British National Vegetation Classification (NVC) for Scotland.  

Scottish Natural Heritage, 

2010. 
2010 5m United Kingdom 

Datasets used to determine biomass and soil carbon stocks  

HWSD_Soil_Carbon 
Harmonized World Soil Database (HWSD) Version 1.21 

FAO, IIASA, ISRIC, 

ISSCAS & JRC, 2012 
2012 1km / 30 arc seconds Global 

Carbon_zones Global Land Cover 2000 (GLC2000) Version 1.1 JRC, 2003.  2000 1km / 30 arc seconds Global 

Other datasets used in the analysis  

World_Countries Represents the political boundaries of the world as at December 
2012.  

ESRI, 2011.  2012 N/A Global 
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Photo: Adrian Ward  
Location: Andes, Chile   

Photos: Adrian Ward 

Location: Southern Alps, NZ (summer and winter) 
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Chapter 5. The global economic impacts of land use change on carbon  

                  stored in mountain grasslands and shrublands 

5.0 The global economic impacts of landuse change on carbon stored in  

Ward, A. Yin, K. Dargusch, P. Fulton, EA. Abdul Aziz, A. 2016. The global economic impacts 

of landuse change on carbon stored in mountain grasslands and shrublands (Under review at 

Ecological Economics).  

 

5.1 Chapter summary  

 

As proposed in Chapter 4, C stores in MGS is not well understood and therefore not commonly 

factored into climate policy and natural resource management (NRM) decision making. One reason 

for this is the lack of general knowledge and data, including around the impact of LULUC, and, the 

exchange of carbon dioxide (CO2) between MGS and the atmosphere. Another reason is that MGS 

are often remotely located and exhibit only minimal vegetation above the treeline, leading policy 

makers to mistakenly conclude that they store little C and thus have, from a climate regulation 

perspective, a relatively low economic impact for society. This chapter attempts to clarify, both in 

biochemical and economic terms, the role that MGS play in global climate regulation and therefore 

international climate policy. Using an Individual Based Model (IBM), the best available spatial input 

data, and while considering a broad range of assumptions, it is estimated that under current land use 

regimes MGS sequester on average 112 million tonnes of CO2 (MtCO2) per annum for the years 2000 

to 2015. We estimate the equivalent economic value (based on avoided social cost of carbon) to be 

between US$1.24 billion and US$11.8 billion per annum, depending on the discount rate applied. If 

land use is managed more sustainably, MGS ecosystems could sequester up to an additional 8.4 Mt 

CO2 per annum while contributing US$0.093 billion - US$0.89 billion annually in added economic 

value to society. These results vary substantially from ecoregion-to-ecoregion and from country-to-

country. When considered for the total in-situ stock, it is estimated that MGS ecosystems contain at 

least 252 ± 39 gigatonnes CO2 (68 ± 11 petagrams C) as at 31 December 2015. The equivalent 

ecological asset value of this C stock is assessed to be between US$2.5 (± 0.43) trillion and US$26.5 

(± 4.1) trillion (2007 dollars). Building on the results in the previous chapter, these figures represent 

the most comprehensive and up-to-date global biochemical and economic estimate provided for MGS 

C stores and associated CO2 fluxes.  
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5.2 Introduction 

Mountain grasslands and shrublands (MGS) provide numerous ecosystem services including plant 

and animal biodiversity, the provision of clean water (for drinking, sanitation, irrigation and energy), 

food, culture and recreation, and as is the focus here, climate regulation through the continued storage 

of existing carbon (C) stocks and sequestration of carbon dioxide (CO2) in high-altitude vegetation 

and soils (Körner, 2005; Ward et al, 2014). Ward et al (2014) estimated that between 60.5 Pg C and 

82.8 Pg of C was stored across 64 mountain countries in the year 2000 (excluding Antarctica). This 

C pool plays an important role in international-level carbon budgets and climate regulation, and has 

a substantial economic value (Ward et al, 2015). Likewise, any net sequestration of CO2 by MGS 

over a period of time will also have an economic benefit to society through mitigating climate change.  

Ecological economics-based valuations have been made for forests, lowland grasslands and marine 

ecosystems (e.g. mangrove forests and seagrass meadows) with the aim of building more robust 

environmental accounts and drawing attention to the climate regulating importance of these areas. 

Proponents also advocate that such estimates enable more effective natural resource management 

(NRM) decision-making through the use of spatial targeting to determine where to best focus limited 

financial and technical resources, enabling climate finance to be used to fund more sustainable land 

use (Costanza et al, 2014; Braat and de Groot, 2012; Lin et al, 2013; Pendleton, et al 2012; TEEB, 

2010). However, unlike for other C pools, an economic value for both C in-situ stocks (the C that is 

there now) and net CO2 sequestration (the additional C that is stored over time) has not been estimated 

for MGS at any national level, let alone at the global scale.   

In this regard, a lack of understanding of trends in land use and land use change (LULUC), CO2 flux, 

and the associated economic values, has potential for adverse decision-making implications for the 

management of MGS (Costanza et al, 2014; TEEB, 2010). Advocates of ecosystem valuation argue 

that such studies help make sense of complex socioecological interactions, allowing for the 

incorporation of the value of natural capital into public decision making processes (TEEB, 2010). 

Perhaps more critically, unsustainable LULUC practices more often than not exert a negative impact 

on C pools, and in addition, the ongoing capacity of vegetation and soils to sequester CO2. This is 

particularly the case for MGS, which are fragile and slow to recover from degradation (Benitson, 

2003). Such degradation has the potential to undermine international climate change mitigation 

targets, such as the recent Paris Agreement, whereby the degradation of C stocks and CO2 

biosequestration capacity (be it forests, marine or MGS ecosystems) offsets greenhouse gas (GHG) 

reduction gains in other areas e.g. energy generation using low emissions technologies. To this end, 

avoiding emissions from unsustainable LULUC practices can be considered both logical and 
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desirable. Avoiding emissions may also offer previously unrecognised carbon mitigation potential 

through mechanisms such as the Reduced Emissions from Deforestation and Degradation (REDD) 

and the Verified Carbon Standard which provide a financial incentive to manage MGS more 

sustainably (Ward et al, 2015).    

Critical knowledge and data gaps impede the resolution of many mountain-related issues, including 

for LULUC in MGS and associated CO2 dynamics (Jansky et al, 2002; Ward et al, 2015). There are 

only a handful of ecological economic orientated studies for mountain forests, and even fewer focused 

on MGS ecosystems. At the local scale, ecosystem valuation studies have been completed for a 

number of locations in the European Alps (Grêt-Regamey et al, 2007; Getzner, 2000; Gliick and 

Kuen, 1977; Glos et al, 2006; Goio et al, 2005; Hackl and Pruckner, 1997; Jaggin, 1999; Tangerini 

and Soguel 2004). The majority of these studies have used contingent valuation methods to value a 

single ecosystem service (e.g. scenic beauty, avalanche protection, recreation). Only two of the 

studies (Goio et al, 2005; Grêt-Regamey et al, 2007) attempted to value multiple ecosystem services, 

including carbon sequestration. All of these studies focused on just one discrete geographical location 

e.g. Davos Switzerland. Grêt-Regamey et al (2012) point out that there is scope and potential benefits 

to policy makers in broadening valuation frameworks (beyond this narrow focus) to support planning 

processes, particularly when considering the most appropriate location for a new development. Grêt-

Regamey and Kytzia (2007) go further and advocate the benefits that economic valuation can 

contribute to regional planning and development. At the global level, no such studies exist for how 

LULUC might impact C stores in MGS ecosystems. 

What is known, however, is that MGS are amongst the world’s most vulnerable ecosystems, with 

climate change, overgrazing, tourism, wildfires and intensive cropping posing a growing threat to the 

C pools contained within these ecosystems (Körner et al, 2005; Ward et al, 2015). Putting aside the 

direct impacts of climate change, the expansion and intensification of cropping and grazing are 

considered by many experts to be the most significant anthropogenic stressors facing MGS 

ecosystems today (Körner et al, 2005; Ward et al, 2015). These land use types dominate the economic 

makeup of many mountain countries around the world, yet the extent to which these activities 

influence MGS ecosystems, the C stored within and the rates of CO2 sequestered, has not been 

quantified or analysed at a global scale.   

Here we present the results from the first global model to estimate the impact of LULUC on C stored 

and CO2 exchanged by MGS ecosystems. This model considers MGS ecoregions in 48 mountain 

countries (98% of the MGS land area identified by Ward et al, 2014) for the years 2000 to 2015. We 

then go one step further and offer the first estimate of the economic value of this C, using Social Cost 
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of Carbon (SCC) as a proxy for the avoided damage to society (as used in similar studies e.g. 

Pendleton et al, 2010). Though there are considerable uncertainties, due mainly to limited data 

availability, our objective is to provide the first comprehensive global estimate of CO2 emissions from 

MGS and associated economic value. It is our hope that policy-makers will be able to use this estimate 

to make more informed and equitable decisions when considering the absolute and relative benefits 

of these important ecosystems from a climate policy perspective, and that it spurs further research in 

building more robust environmental-economic accounts.   

 

5.3 Materials & methods 

The method for this study consists of three stages. First, we used the spatial data outputs from Ward 

et al (2014) as the basis for Geographical Information Systems (GIS) analysis in Esri ArcGIS, where 

we overlayed additional datasets and ran a number of calculations to determine a set of spatially-

resolved input parameters critical to stage 2 (Table 10). Second, using these input parameters, a 

performance model was developed in AnyLogic to estimate the monthly impact of LULUC on Net 

Primary Productivity (NPP) and soil erosion, and its influence on MGS C stocks and CO2 exchange 

dynamics between 1 January 2000 and 31 December 2015. Finally, using Microsoft Excel, we 

undertook an economic assessment by applying a range of SCC values to absolute C stocks for 31 

December 2015 and to annual net CO2 exchanges over the simulation timeframe as per the outputs 

from our AnyLogic model. This assessment takes into account changes in biomass and soil C over 15 

years under anthropogenic (current land use regime) versus non-anthropogenic scenarios (sustainable 

management), providing a conservative estimation of the value of MGS climate regulation based on 

potential for avoiding economic damage to society. Below we present the details of the GIS 

procedure, and the model, the latter being based broadly on Overview-Design-Details (ODD) 

protocols for Individual Based Models (IBMs) as established by Grimm et al (2006). Though our 

model is not exclusively an IBM in the sense of a cellular automata (as there is no direct interaction 

between individual ecoregions) it does share many of the same characteristics that such IBMs exhibit, 

where for example, the characteristics of each ecoregion are tracked through time (Reynolds, 1997). 

The model also shares the same purpose of many IBMs which is to provide an insight into how local 

actions translate into global consequences. Therefore, in the absence of a better framework, the ODD 

protocols were judged to be fit for this purpose. We then describe the economic assessment process.  

  



 

 
   86 

 

5.4 Model purpose 

The purpose of the model is to use the best available input data to gain a high-level global insight into 

how MGS C stocks might change over time under current LULUC practices and trends 

(‘Anthropogenic Scenario’) compared to a situation where natural MGS ecosystems might experience 

minimum disturbance (‘Non-anthropogenic Scenario’). Understanding the difference in absolute C 

stocks between these two scenarios as at 31 December 2015 will infer important information about 

annual CO2 exchanges in MGS globally, a measure that has not yet been estimated. The output data 

is then used to make an economic assessment of the value of this C using a range of SCC scenarios 

as metric for avoided economic damage to society.         

 

5.5 Input parameters, variables and scales 

The model consists of three hierarchical levels: ecoregion (individual), country (group) and global 

(simulation). Ecoregions are considered individuals and are initially characterised by a number of 

input parameters, the data of which was derived from the biogeographically-derived outputs of the 

study by Ward et al (2014).  

Considering the limitations of available computer processing power, MGS surface area was divided 

into 20,798 land area vectors (of varying area) based primarily on ecoregion boundary. Important 

input parameters for each of these ecoregions include: proportion of land use for each ecoregion; 

mean soil bulk density; mean organic content; mean climatic factors important to determining NPP 

(rainfall, temperature and snow coverage); crop harvest frequency (CHF); and, factors critical to 

determining soil loss using the Universal Soil Loss Equation (USLE) e.g. mean rainfall erosivity, 

mean soil structure and mean land cover protection factor. The model input parameters are detailed 

in (Table 10), and utilise the data outputs from a recently published biogeographically-focused study 

(Ward et al, 2014) to define the extent of MGS ecosystems and associated carbon stocks (above and 

below-ground biomass and soil carbon to one metre depth) for the year 2000. The input parameters 

drive the variables of the model, through a series of monthly time steps as described below. These 

dynamic variables influence and change each ecoregion’s input parameters, incorporating any feed-

back that may be present in the system (Table 11). The model is of global scale, and utilises spatial 

input data from a variety of sources (Table 5). While the activities in one ecoregion may in theory 

influence the state of LULUC practices elsewhere (e.g. through competition, regulatory measures, 

sequential adoption of technology etc), it was felt there was too little information available to suitably 

parameterise such dynamic components. Consequently, interactions between ecoregions were 

omitted from this first estimate of MGS C stocks.  
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Table 5. Sources of spatial data 

Input Data Type (Name) 
Temporal and Spatial 

Resolution  (data type) 
Literature/Data Sources 

World Countries Year 2012 (Feature) ESRI, 2011. 

MGS Ecoregions Extent  

(WWF Ecoregions,  

Mountains of the world) 

Year 2000, 1km (shapefile) 

Olson et al, 2001; WWF, 2004; Kapos 

et al, 2000; UNEP-WCMC, 2000; Ward 

et al, 2014. 

Soil Organic Carbon  

(Harmonised World Soil Database) 
Year 2000, 1km (shapefile) 

FAO, IIASA, ISRIC, ISSCAS & JRC, 

2012. 

Biomass Carbon  

(GLC2000) 
Year 2000, 1km (shapefile) JRC, 2003. 

Major roads around the wold  

(Global Roads) 
1980-2010 (Feature) CIESIN, 2013.  

Extent of MGS pasture 

(Global Agricultural Lands: Pastures) 
Year 2000, 10km (Raster) Ramankutty et al, 2008.  

Extent of MGS cropland 

(Global Agricultural Lands: Croplands) 
Year 2000, 10km (Raster) Ramankutty et al, 2008.  

Monthly temperature and rainfall 

(WorldClim) 

Year 2000-2015 (monthly), 

1km (Raster) 

 

Hijmans et al, 2005.  

MGS Protected Areas 

(World Database on Protected Areas) 
Year 2000, 1km (shapefile) IUCN and UNEP-WCMC, 2015.  

Population Density 

(Global Rural-Urban Mapping Project) 
Year 2000, 1km (Feature) Balk et al, 2006.  

Settlement Points 

(Global Rural-Urban Mapping Project) 
Year 2000, 1km (Feature) Balk et al, 2006.  

Global Cattle, Buffalo, Sheep Density  

(Gridded Livestock of the World) 
Year 2000, 1km (Feature) FAO, 2005. 

Snow cover 

(MODIS snow cover fraction) 

Year 2000 (monthly), 500m 

Raster  
NASA, 2006. 

 

Most datasets in the model start in the year 2000, which corresponds to the simulation start time. The 

simulation timeframe was set from 1 January 2000 to 31 December 2015. This timeframe was chosen 

on the basis: i) that the year 2000 provides the opportunity to utilise the most reliable and consistent 

baseline data (e.g. HWSD, GLC2000 and WWF Ecoregions); and ii), that empirical data published 

until the year 2015, would be used to validate the model. Politically, 2015 also represents an important 

year from a climate policy perspective given the establishment of the Paris Agreement at the most 

recent United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties.  

The model’s spatial resolution varies by dataset, from 10km (5 Arc Mins) to 1km (30 Arc Secs). 

Ecoregion, climate, biomass and soil C data is of the finer 1km resolution, which is important when 

considering that rainfall, temperature and snowfall are highly variable in mountains areas, influencing 

Net Primary Productivity (NPP) and soil loss, and thus CO2 sequestration from site-to-site (Beniston, 

http://www.fao.org/ag/againfo/resources/en/glw/home.html
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2003). Roads, livestock density and initial land use data resolution was more coarse, however when 

considering that the model is of global scale, the resolution was judged to be adequate for the stated 

purpose. Overall, we argue that the model largely achieves spatial and temporal heterogeneity by 

utilising the best global scale data available for MGS for the year 2000.  

 
 

5.6 Process overview and scheduling 

The model proceeds in monthly time steps (Figure 19). Within each month, five key submodels are 

processed in the following sequence: NPP (Submodel 1); Biomass C accumulation (Submodel 2); 

soil loss (Submodel 3); Soil C accumulation (Submodel 4); and, LUC (Submodel 5). This sequence 

is completed for each of the 27,000+ ecoregions individually, for the period 1 January 2000 to 31 

December 2015, with monthly outputs generally accumulating with each time step for each ecoregion. 

Key outputs (e.g. ‘Change in total ecoregion C’) are aggregated on a country (national) and then at a 

global (simulation) level on an annual basis. The LUC submodel feedbacks changes into the input 

parameters and associated variables on an annual basis. Each of these submodels is described below. 

Note that because we chose not to include dynamic interaction between ecoregions the model is 

insensitive to the order of execution of the ecoregions. 
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Figure 19. Model design overview (including submodels) 

 

 

 

5.7 Design concepts 

The model is deterministic (non-stochastic) and focused on simulating five main relationships 

(submodels) for each individual ecoregion, where the following general assumptions have been made: 

i. low mean monthly temperatures (especially winter), low rainfall and proportionally high snow 

coverage limit net NPP and therefore net biomass C accumulations;  

ii. NPP is adversely impacted by high livestock stocking rates (TLU/ha), high rural population 

density (people/ha) and more frequent crop harvesting;  

iii. lower net NPP has a relatively minor direct impact on soil C, through indirectly contributing 

to more sparse vegetation and lower soil protection, and thus higher rates of soil and C loss 

over time; 

iv. rates of soil erosion and C loss are higher for MGS ecoregions located in areas with steeper 

and shorter slopes and where carrying capacity is exceeded; and 
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v. average annual trends in national cropland, pasture, protected area, population and livestock 

expansion, as limited by biophysical and social factors (e.g. biomass C and SOC limits, 

erosion protection, protected area status and proximity to major roads), change the land use 

makeup of each ecoregion, and therefore net NPP, soil erosion, and ultimately ecoregion C 

accumulated over time.  

The model takes into account many of the most important drivers of land use change, as identified by 

the Economics of Land Degradation (ELD) Initiative (2015). These drivers include those categorised 

as Proximate (topographic, land cover, climate, and soil erodibility), Underlying (population density, 

market access), Natural (topographic, land cover, climate, soil erodibility) and Anthropogenic (land 

cover, unsustainable land management).     

 

5.8 Initialization 

The model was run twice for each of the 48 mountain countries and associated individual ecoregions 

concerned, with the simulation timeframe set from 1 January 2000 to 31 December 2015. Under the 

first simulation, all input parameters for the Year 2000 (Table 10) sourced from Ward et al (2014) 

and using GIS (Table 5) remained unchanged. Under the second simulation, key anthropogenic-

orientated input parameters influencing reductions in NPP and increased soil loss were manually set 

to ‘0’. These parameters were: land cover protection factor; livestock and rural population density; 

CHF; and, annual trends in population, livestock, cropland, pasture and protected area expansion. 

Setting these parameters to ‘0’ effectively negates anthropogenic influence under this scenario, for 

example, if livestock density is set to zero then there are no cattle consuming biomass and therefore 

no loss of NPP and higher gains in biomass and soil C.   

 

5.9 Input 

The model is largely driven by monthly changes in temperature, rainfall and snowfall - important 

environmental conditions for the accumulation of C in MGS (Benitson, 2003). These conditions are 

spatially explicit for each ecoregion, and influence the dynamics of the model’s dynamic variables 

e.g. NPP. Model inputs are discussed in detail in Section 6.0 Supplementary Materials.     .      
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5.10 Submodels 

The submodels are run in the following sequence: NPP; net biomass C accumulation; soil and SOC 

loss; net SOC accumulation; and, land use change. The specific approach, mathematical formulas, 

assumptions and references for each submodel are detailed below, with formulas and further 

explanation provided in Chapter 5.16, Supplementary materials.      

5.10.1 Net Primary Productivity (NPP) 

According to Running et al (2000), terrestrial biological productivity (or primary productivity) is the 

single most fundamental measure of global change of practical interest for humankind. NPP is the 

measure of C intake by plants during photosynthesis, and this measure is an important indicator for 

studying the health for plant communities. To determine biomass NPP for each ecoregion, the first 

stage in our model, we used a modified version of Leith’s well-known Miami Model which was first 

published in 1975 (Leith, 1975). This empirical model links NPP with either long-term mean rainfall 

or temperature, with the assumption that the smaller value of the two be applied to achieve the most 

conservative estimate for NPP on the basis that any increase in NPP is assumed to be limited by these 

two factors (Grieser et al, 2006). Though relatively simple to implement, the Miami Model’s ability 

to generate reasonable global NPP estimates (as done so in other studies) made it a suitable starting 

point for this study (Zaks et al, 2007).  

While the Miami Model is a relatively reliable method of estimating NPP in general terms, it does 

require further modification for MGS. A regression analysis by Lin (2014) found that the Miami 

Model overestimated high values of observed values of NPP for MGS ecosystems of the Qinghai-

Tibetan Plateau. A probable reason for this is that the Miami Model does not take into account the 

extent to which NPP is constrained by winter snow coverage through limiting the light response to 

CO2 uptake (Körner, 1982). Another potential issue is that the Miami Model does not take into account 

changes in atmospheric CO2 concentrations and other environmental factors, such as the CO2 

response coefficient and scale translation, plant life span, and the steady-state partitioning coefficient 

concerning the proportionate distribution of new biomass to the leaf, branch, stem and roots of MGS 

vegetation (Cure and Acock, 1986; Grace et al, 2006; King et al, 1997; Walker et al, 2013). To take 

these factors into account, we adopted Grace et al’s (2006) and King et al’s (1997) suggestions for 

modifying the Miami Model, then adapted it further for our purposes by including the NPP limiting 

impact of monthly snow coverage, and by subtracting NPP consumed by the local rural population 

and livestock. 
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5.10.2 Biomass C submodel 

In this model, we assume that C may only continue to accumulate in vegetation if the assumed 

maximum theoretical storage value for biomass C has not been reached on a per hectare basis. Each 

ecoregion has been assigned a biomass C limit (tCha-1) based on the highest maximum C density per 

hectare (tCha-1) given by the GLC2000 (Table 5) spatial dataset for the relative ecoregion type (e.g. 

Tian Shan Montane Steppe and Meadows) and respective country (e.g. China). The limit reflects C 

storage in the most intact, healthy and undisturbed (and often remote) ecoregions. 

5.10.3 Soil loss (USLE) submodel 

According to Ward et al (2014), around 98 percent of MGS ecosystem C is contained within the soil 

globally. It is therefore critical to consider the influence of LULUC on erosion rates, and the extent 

to which SOC is destabilised and/or exposed to oxygen and thus released as a GHG into the 

atmosphere. The Universal Soil Loss Equation (USLE) is a processed-based mathematical model, 

developed from erosion plot empirical studies and rainfall simulations, commonly used to estimate 

long-term annual soil erosion within a given area or slope (Hudson, 1993; Lane et al, 1988; 

Wischmeier and Smith, 1978). Like the Miami Model, USLE is a relatively simple approach to 

modelling erosion and soil loss, which has been used at the local to global scale (King et al, 1997).   

5.10.4 Soil C submodel  

In this model, we assume that C may only continue to accumulate in soil if the assumed maximum 

theoretical value for SOC (down to 1m depth) has not been reached on a per hectare basis. Each 

ecoregion has been assigned a C limit based on the highest maximum C density per hectare (tCha-1) 

given by the HWSD (Table 5) spatial dataset for the relative ecoregion type and respective country. 

5.10.5 Land use change submodel 

We assumed national-level LUC growth indicators (cropland, pasture, TLU, rural population), 

coupled with constraints associated with market access (i.e. major roads) and protected area status, to 

be sufficient for the purposes of incorporating LUC trends into this model. National-level LUC data 

for each of the 48 mountain countries concerned was obtained from FAOSTAT (FAO, 2015a) for the 

following variables for the years 2000 to 2015: annual percent change in agriculture (crop) area; 

annual percent change in pasture area; annual percent change in protected area; annual percent change 

in cattle and buffalo herd size; and, annual percent change in rural population.  
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At the end of each simulation year, the model updates the key input parameters accordingly by way 

of a state-and-transition approach i.e. change in percent of ecoregion land use for cropland versus 

pasture versus natural (protected), percent increase or decrease in rural population and TLU per 

hectare. This has flow on effects for NPP and soil loss. For example, an upward trend in cattle density 

(TLU/ha) increases NPP consumed (decreasing biomass C) while also potentially exceeding the 

ecoregion’s carrying capacity, and therefore adversely affecting the USLE land cover protection 

factor (i.e. more bare ground) and ultimately leading to greater erosion, soil and SOC loss.         

Each ecoregion’s proximity to road and its protected areas status also has a bearing on whether or not 

LUC trends were applied. Explicitly, if the borders of the concerned ecoregion were within 1km 

proximity of a major road (Table 5), then we applied the relevant trend for cropland, pasture, cattle 

and population expansion to the ecoregion as described above. If not, then we assumed these 

parameters for the ecoregion did not change. Likewise, we did the same for protected area status, 

where the ecoregion was not protected by a recognised convention (Table 5) then the input parameters 

would change (and vice versa). In summary, LUC trends were only applied if the ecoregion: was 

within 1km of a major road and not a protected area. 

 

5.11 Estimation of economic value  

Using the simulation results, we adopted a quasi-option value avoided cost approach, as presented by 

TEEB (2010) and TEEB (2013), to estimate the cumulative and annual global economic value of CO2 

sequestered by MGS. According to TEEB (2010) avoided cost is the most common approach to 

quantifying the value of regulating ecosystem services (Lescuyer, 2000; Pendleton et al, 2012). The 

approach “relies on the assumption that damage estimates are a measure of value” (TEEB, 2010, 

p.32). We use SCC as the key metric to value avoided damage. According to the US Government 

(2015, p. 2) SCC can be defined as “estimate of the monetized damages associated with an 

incremental increase in carbon emissions in a given year” whose purpose is to “allow agencies to 

incorporate the social benefits of reducing carbon dioxide (CO2) emissions into cost-benefit analyses 

of regulatory actions that impact cumulative global emissions”.  

To determine the avoided damage currently being provided by MGS, and the potential for avoiding 

additional damage should MGS be more sustainably managed, the US Government’s (2015) estimates 

for SCC were applied in 2015 (Table 6) to the outputs of the model (annual and accumulated net CO2 

exchange between 2000 and 2015, and total in-situ CO2 storage in MGS at the end of 2015). Providing 

an economic estimate of net CO2 sequestration and total in-situ CO2 storage provides an important 
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metric on the value of MGS in terms of its ecosystem services and as an environmental asset. SCC 

pricing scenarios are given below (US Government, 2015), with the value of US$36/CO2 (at three 

percent discount rate) considered our central estimate.   

 

Table 6. SCC Pricing Scenarios 2015 (2007 US$ / CO2) 

Discount Rate 5.0%  3.0%  2.5%  3.0%  

 

Model Value 

 

Mean value  Mean value  Mean value 
95th 

Percentile 

 SCC Estimate US$11/CO2  $36/CO2 $56/CO2  $105/CO2  

  

The first three values (at discount rates of five, three and 2.5 percent) represent the mean SCC estimate 

for 2015 (in 2007 US$ per tCO2) as generated by three of the most commonly used global integrated 

assessment models (IAMS) which seek to quantify the damage to society caused by climate change 

e.g. impacts of temperature rise agriculture and sea-level rise on infrastructure. These IAMs are the 

Dynamic Integrated Climate and Economy (DICE), Policy Analysis of the Greenhouse Effect 

(PAGE) and Climate Framework for Uncertainty (FUND). The 95th percentile SCC estimate given 

for a three percent discount rate represents higher-than-expected damage across the three IAMs (US 

Government, 2015).  

 

5.12 Testing & validation   

We tested the model by observing the monthly results of each submodel as it was processed, how the 

impact of these results were accounted for the next submodel processed by the system (and-so-on), 

and by observing the outputs of the model as a whole on a monthly, yearly and year-to-year basis. 

We manually calculated the results outside the model to crosscheck these results. Testing consisted 

of manual procedures performed throughout the model development, testing and implementation 

according to a checklist, for example: Identifying poorly formed geometry and evaluating sliver 

polygons (very small polygons resulting from overlay analysis, as used by this study) before 

extracting spatial data from ArcGIS, cell-by-cell checks of all data input spreadsheets for null, 

outlying and duplicate values, and, ensuring calculation formulas were correctly applied within 

ArcGIS, AnyLogic and within Excel.  

The simulation results fall largely within the range of recently published empirical values for C 

density (t C ha-1) for the relative MGS country (Table 7), and in most cases are conservative. Most of 

these results are directly related to the initial input parameters, so while the results may support the 
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validity of the model, they mostly confirm that the input parameters were set appropriately. Other 

results from the model emerge from more complex inter-relationships. For example, annual soil loss 

is influenced by rainfall, existing vegetation type and coverage, annual net biomass (which is 

influenced by temperature, rainfall, snow coverage, crop harvest frequency, biomass consumption by 

livestock and human populations) and overgrazing. This in turn provides positive feedback 

concerning biomass and soil C for each ecoregion as a whole, and therefore nationally and globally 

when aggregated.      

Table 7. Comparison of studies on ecosystem C storage dynamics (C density) in mountain grasslands 

and shrublands with results provided by this model 

 

Country 
Study results  

(biomass and soil) 
Study Reference 

Avg.model result at  

end of 2015 

Global average 40 - 207 t C ha-1 Schlesinger 1977 60 t C ha-1 

China 

31 - 290 t C ha-1 Wang et al 1998 

67 t C ha-1 12 - 565 t C ha-1 Wang et al 2002 

10 - 137 t C ha-1 Ohtsuka et al 2008 

New Zealand 16 - 56 t C ha-1 Landcare Research 2012 62 t C ha-1 

Columbia 135 - 521 t C ha-1 Pena et al 2011 232 t C ha-1 

Venezuela  259 - 486 t C ha-1 Hofstede et al 2003 430 t C ha-1 

 

5.13 Limitations and uncertainties 

For each ecoregion, we estimated the total CO2 that could be sequestered (or released) annually. Due 

to the lack of data quality this study did not utilise more sophisticated methods for estimating 

decomposition processes over time e.g. exponential delay modelling (VCS, 2014). The temporal 

aspects of shallow SOC decomposition (0-1m depth) is an area of significant research with many 

complexities (Pendleton et al, 2012). We took a conservative approach when estimating SOC 

sequestration and losses, only focusing on SOC in the top metre of soil (Pendleton et al, 2012). Our 

assumption is that these pools are most prone to LUC disturbances, and thus most important to include 

in the model. The USLE model has a number of limitations: the model applies only to sheet erosion 

caused by rainfall (not mass erosion events); has not been verified using empirical data from steep 

slopes > 25º; the mathematical relationship between kinetic energy and rainfall intensity is likely to 

be underestimated (meaning soil loss could be much higher in MGS areas with high orographic 

rainfall influence); and, USLE uses decadal averages and does not take into account individual 

rainstorms (FAO, 2016).  In estimating NPP, the Miami Model does not take into account leaf mass 

index, leaf area index (LAI), solar radiation, daytime length, the presence of persistent snow banks 

into spring and other factors important to the photosynthesis of alpine plants (Körner, 2003).  
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We did not account for other greenhouse gas emissions, such as methane (CH4,) from livestock or 

nitrous oxide (N2O) from fertiliser. Nor did we account for possible exchanges of CO2 from one 

ecosystem to another. Mountain ranges located in Turkey, Iran, Liechtenstein, the Antarctic and its 

remote islands (e.g. Heard Island), and other relatively small and isolated MGS ecoregions in the 

Rockies Mountains and European Alps were excluded due to the lack of reliable spatial data. 

However, taking into account these exclusions, 98 percent of the MGS land area identified by Ward 

et al 2014 was included. We also did not take into account the biophysical influence that MGS have 

on climate change as suggested by Hungate and Hampton (2012). In this case, we did not apply a 

discount rate to the economic analysis, however if the simulation was run over a greater timeframe 

then this would be necessary. It should also be noted that SCC should be considered an economic 

estimate for avoided climate damage, and not necessarily what the market is willing to pay for 

emissions reductions (US Government, 2010). Considerable uncertainty also stems from the rates of 

land use conversion in MGS, and more generally for mountain areas as identified by a number of 

studies (Gurung et al, 2010; Jansky, 2002; Ward et al, 2015). 

All-in-all, given that our model is of global scale, with the objective of providing an initial and 

conservative estimate of climate regulation value to stimulate future research and policy discourse, 

we argue that our model approach and assumptions are fit-for-purpose while acknowledging that 

improvements could be made in the future.    

 

5.14 Results and Discussion 

We ran two scenarios using the model: in the first scenario all input parameters remained unchanged. 

Under the second scenario key anthropogenic-orientated input parameters influencing reductions in 

NPP and increased soil loss were manually set to ‘0’. As no global baseline of MGS CO2 exchange 

currently exists, the first objective was to determine the difference in net CO2 sequestration between 

the two scenarios, providing an initial estimate for potential CO2 by MGS, and subsequently, potential 

avoided economic damage using SCC.  

The simulation results (Figure 20) reveal that between 1 January 2000 and 31 December 2015, under 

current land use regimes we estimate MGS sequestered 1,687 million tonnes of CO2 (MtCO2), or an 

average of 112 MtCO2 per annum. If land use is managed more sustainably, MGS ecosystems could 

sequester up to 8.4 Mt in additional CO2 per annum (total of 121 MtCO2 per annum, or 1,814 MtCO2 

over the 15 year simulation timeframe). The results vary substantially from MGS ecoregion to 

ecoregion and from country to country (Table 8). For example, MGS ecoregions located in China 

account for around 54 percent of this potential, while MGS in the Democratic Republic of the Congo 
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are relatively small and thus account for approximately two percent of global MGS CO2 sequestration 

potential.  

These estimates support the postulation made in Ward et al (2014) that when MGS ecoregions are 

maintained in a sustainable ecological state, where LUC influences were minimal compared to the 

present situation where many MGS are being managed under various levels of land use and land use 

intensity, MGS ecoregions can sequester additional CO2 emissions. MGS represent a relatively minor 

(though still comparable) annual CO2 sink when compared to mangroves (for example) where 

LULUC is estimated to result in reduced CO2 sequestration of between 0.8 and 21 MT C per annum 

(Bridgham et al, 2006; Pigeon, 2009).  

Figure 20. Global cumulative CO2 sequestration potential of mountain grasslands and shrublands vs 

CO2 sequestration under current land use regime (between 2001-2015)    

 

Note: This figure shows the potential cumulative CO2 sequestration by MGS between 2000 and 2015. This is the 

difference in CO2 sequestered between simulated baseline sequestration under existing land use regime scenario and a 

scenario where anthropogenic influence is minimised (i.e. largely intact and healthy MGS ecosystems reach maximum 

CO2 uptake).            

 

 

Translating these outputs into an economic value, between 1 January 2000 and 31 December 2015, 

under current land use regimes the total CO2 sequestered worldwide (avoided SCC) was estimated to 
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be between $18.5 billion and $177.14 billion (2007 dollars, based on 1,687 MtCO2 being sequestered 

over the 15 years). On an annual basis, we estimate the average avoided SCC to be between US$1.24 

billion and US$11.8 billion (based on 112 MtCO2 per annum and depending on the discount rate 

chosen). If MGS were more sustainably managed, the potential additional value (Table 8) of MGS 

climate regulation (avoided SCC) is estimated to be between US$1.3 billion and US$13.34 billion 

over the simulation timeframe (1 January 2000 and 31 December 2015), and on average US$0.093 

billion - US$0.89 billion per annum, with a central estimate (at three percent discount rate) of 

US$0.30 billion per annum as shown in Table 8. 
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Table 8. Range of economic values (2007 US$ million) for potential additional CO2 sequestration by 

MGS ecosystems 1 Jan 2000 - 30 Dec 2015 (total and annual) 

  SCC Scenarios 2015 (US$ million 2007) 

 Est. total tCO2 

sequest. 2000-

2015 

Potential add. sequest value for 2000-2015 (15 years) Ann. mean sequest. value 
  @US$ 11 @US$ 36 @US$ 56 @US$ 105 Est. mean annual 

tCO2 sequest. 

@US$ 36 

 2.5% Avg. 3% Avg. 5% Avg. 3% Avg. 3% Avg. 

China 69,385,174 $763.24 $2,497.87 $3,885.57 $7,285.44 4,625,678 $166.52 

Ethiopia 24,071,830 $264.79 $866.59 $1,348.02 $2,527.54 1,604,789 $57.77 

South Africa 5,428,528 $59.71 $195.43 $304.00 $570.00 361,902 $13.03 

Lesotho 4,814,405 $52.96 $173.32 $269.61 $505.51 320,960 $11.55 

Argentina 3,665,588 $40.32 $131.96 $205.27 $384.89 244,373 $8.80 

Peru 3,387,267 $37.26 $121.94 $189.69 $355.66 225,818 $8.13 

Angola 2,882,927 $31.71 $103.79 $161.44 $302.71 192,195 $6.92 

Kyrgyzstan 2,070,181 $22.77 $74.53 $115.93 $217.37 138,012 $4.97 

Tanzania 1,396,714 $15.36 $50.28 $78.22 $146.65 93,114 $3.35 

Ecuador 1,237,171 $13.61 $44.54 $69.28 $129.90 82,478 $2.97 

Chile 1,216,556 $13.38 $43.80 $68.13 $127.74 81,104 $2.92 

Bolivia 1,107,641 $12.18 $39.88 $62.03 $116.30 73,843 $2.66 

Nepal 1,095,111 $12.05 $39.42 $61.33 $114.99 73,007 $2.63 

Colombia 1,074,193 $11.82 $38.67 $60.15 $112.79 71,613 $2.58 

Kazakhstan 913,809 $10.05 $32.90 $51.17 $95.95 60,921 $2.19 

Nigeria 830,376 $9.13 $29.89 $46.50 $87.19 55,358 $1.99 

Malawi 515,237 $5.67 $18.55 $28.85 $54.10 34,349 $1.24 

New Zealand 453,263 $4.99 $16.32 $25.38 $47.59 30,218 $1.09 

Eritrea 392,105 $4.31 $14.12 $21.96 $41.17 26,140 $0.94 

Indonesia 345,306 $3.80 $12.43 $19.34 $36.26 23,020 $0.83 

Tajikistan 331,867 $3.65 $11.95 $18.58 $34.85 22,124 $0.80 

Bhutan 280,561 $3.09 $10.10 $15.71 $29.46 18,704 $0.67 

PNG 213,088 $2.34 $7.67 $11.93 $22.37 14,206 $0.51 

Morocco 187,197 $2.06 $6.74 $10.48 $19.66 12,480 $0.45 

Zimbabwe 158,461 $1.74 $5.70 $8.87 $16.64 10,564 $0.38 

Zambia 149,255 $1.64 $5.37 $8.36 $15.67 9,950 $0.36 

India 123,164 $1.35 $4.43 $6.90 $12.93 8,211 $0.30 

Kenya 118,613 $1.30 $4.27 $6.64 $12.45 7,908 $0.28 

Mongolia 96,216 $1.06 $3.46 $5.39 $10.10 6,414 $0.23 

Venezuela 90,145 $0.99 $3.25 $5.05 $9.47 6,010 $0.22 

Madagascar 57,480 $0.63 $2.07 $3.22 $6.04 3,832 $0.14 

Afghanistan 53,722 $0.59 $1.93 $3.01 $5.64 3,581 $0.13 

Norway 40,239 $0.44 $1.45 $2.25 $4.23 2,683 $0.10 

United States 35,542 $0.39 $1.28 $1.99 $3.73 2,369 $0.09 

Russ. Fed. 25,877 $0.28 $0.93 $1.45 $2.72 1,725 $0.06 

Turkmenistan 14,823 $0.16 $0.53 $0.83 $1.56 988 $0.04 

DR Congo 3,705 $0.04 $0.13 $0.21 $0.39 247 $0.01 

Finland 4,304 $0.05 $0.15 $0.24 $0.45 287 $0.01 

Canada -   12,456 -$0.14 -$0.45 -$0.70 -$1.31 - 830 -$0.03 

Pakistan -   1,155,505 -$12.71 -$41.60 -$64.71 -$121.33 -  77,034 -$2.77 

 Totals 127,099,701.21 $1,398.10 $4,575.59 $7,117.58 $13,345.47 8,473,313 $305.04 

 
Australia, Greenland, Malaysia, Mozambique, Myanmar, Rwanda, Swaziland, Sweden and Uganda considered to have 

relatively stable C stores (thus not included above). Negative values indicate CO2 sequestration is likely greater under the 

anthropogenic scenario. 
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Historically, the C within MGS has been stored over a long geological timeframe (FAO, 2015b). 

Changes are much more rapid now. The negative impact of anthropogenic stressors be it agricultural 

intensification or climate change are projected to increase over time for MGS due to growing 

populations, new technologies and greater affluence (Ward et al, 2015). Much of this C could be lost 

if we are not conscious of its significance, both in terms of its biochemical relevance to climate change 

policy and economic value to society. Therefore, when considering the economic value of avoided 

damage through climate regulation by natural ecosystems, it is important to recognise MGS as a long 

established C pool, and not just for the C stored annually (TEEB, 2010; Pendleton et al, 2012).  

Taking into account the scenario where CO2 is sequestered over the simulation timeframe, and using 

the original estimates provided by Ward et al (2014) we estimate there to be at least 68 ± 11 Petagrams 

C (252 ± 39 Gigatonnes CO2) stored in MGS vegetation and soils worldwide at 31 December 2015.  

The equivalent in-situ value (Table 9) of this C stock is estimated to be between US$2.5 ± 0.43 trillion 

and US$26.5 ± 4.1 trillion (2007 dollars). This range would be even wider if we considered the full 

array of estimates for SCC ($7–126 tCO2) as published in the literature (Foley et al, 2013; Stern, 

2007; US Government, 2010). Even at the most conservative estimate of US$2.5 trillion, MGS are 

arguably significant environmental assets when only avoided SCC is considered. Obviously, if one 

was to include a value for water provision, slope stability and the many other ecosystem services 

provided by MGS ecosystems, then this estimate would be far higher (Gret-Regamey and Kytzia, 

2007).  

Our premise for providing this first initial estimate of MGS climate regulation value is to highlight 

the potential damage to society should MGS be degraded. In other words, for every tonne of C that 

is not released from MGS there are benefits to humanity. From this point of view, and when 

considering the goals of the Paris Agreement, more sustainable LULUC should be considered 

alongside other climate policy options just as it has been considered for other ecosystem.
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Table 9. Range of economic values (2007 US$ million) for absolute in-situ carbon storage by MGS ecosystems, as estimated at  

31 December 2015, by country  

    SCC Valuation Scenarios 2015 (2007 US$ million) 

 

Mt CO2 storage equivalent 

(adapted from Ward et al, 2014) 
@ US$ 11 

2.5% Avg. 

@ US$ 36 

3% Avg. (central est.) 

@ US$ 56 

5% Avg. 

@ US$ 105 

3% (95th percentile) 

Afghanistan            1,413  +/- 184 $15,545 +/- $2,027 $50,874 +/- $6,633 $79,137 +/- $10,318 $148,381 +/- $19,346 

Angola               343  +/- 47 $3,774 +/- $518 $12,353 +/- $1,694 $19,215 +/- $2,636 $36,029 +/- $4,942 

Argentina            3,036  +/- 495 $33,394 +/- $5,442 $109,291 +/- $17,809 $170,008 +/- $27,703 $318,765 +/- $51,944 

Australia               306  +/- 52 $3,370 +/- $568 $11,028 +/- $1,859 $17,154 +/- $2,892 $32,164 +/- $5,422 

Bhutan               145  +/- 20 $1,596 +/- $217 $5,224 +/- $710 $8,126 +/- $1,104 $15,237 +/- $2,070 

Bolivia            3,054  +/- 505 $33,589 +/- $5,558 $109,928 +/- $18,190 $170,999 +/- $28,295 $320,623 +/- $53,053 

Canada          23,978  +/- 3,884 $263,759 +/- $42,719 $863,210 +/- $139,809 $1,342,772 +/- $217,480 $2,517,697 +/- $407,776 

Chile            2,563  +/- 477 $28,192 +/- $5,245 $92,265 +/- $17,165 $143,523 +/- $26,701 $269,105 +/- $50,064 

China          74,968  +/- 11,198 $824,645 +/- $123,181 $2,698,840 +/- $403,136 $4,198,195 +/- $627,101 $7,871,616 +/- $1,175,814 

Columbia            1,341  +/- 216 $14,751 +/- $2,375 $48,276 +/- $7,774 $75,096 +/- $12,093 $140,805 +/- $22,674 

DR Congo                 21  +/- 4 $230 +/- $43 $753 +/- $139 $1,171 +/- $216 $2,195 +/- $406 

Ecuador               986  +/- 204 $10,841 +/- $2,245 $35,481 +/- $7,348 $55,192 +/- $11,431 $103,486 +/- $21,432 

Eritrea                 68  +/- 9 $752 +/- $102 $2,462 +/- $333 $3,830 +/- $518 $7,182 +/- $971 

Ethiopia            2,666  +/- 445 $29,329 +/- $4,896 $95,986 +/- $16,023 $149,312 +/- $24,925 $279,960 +/- $46,734 

Finland               440  +/- 62 $4,842 +/- $681 $15,846 +/- $2,228 $24,649 +/- $3,466 $46,216 +/- $6,499 

Greenland            4,353  +/- 898 $47,882 +/- $9,875 $156,705 +/- $32,319 $243,763 +/- $50,273 $457,056 +/- $94,262 

India            2,067  +/- 290 $22,732 +/- $3,195 $74,396 +/- $10,455 $115,726 +/- $16,263 $216,987 +/- $30,494 

Indonesia               307  +/- 47 $3,381 +/- $521 $11,064 +/- $1,705 $17,210 +/- $2,653 $32,269 +/- $4,974 

Kazakhstan            1,868  +/- 257 $20,551 +/- $2,827 $67,259 +/- $9,251 $104,625 +/- $14,390 $196,172 +/- $26,981 

Kenya                 62  +/- 16 $683 +/- $176 $2,235 +/- $575 $3,476 +/- $895 $6,517 +/- $1,678 

Kyrgyzstan            2,423  +/- 329 $26,650 +/- $3,614 $87,218 +/- $11,826 $135,673 +/- $18,396 $254,387 +/- $34,493 

Lesotho               757  +/- 107 $8,325 +/- $1,179 $27,246 +/- $3,857 $42,383 +/- $6,000 $79,468 +/- $11,250 

Madagascar                 24  +/- 4 $267 +/- $40 $874 +/- $130 $1,360 +/- $202 $2,550 +/- $379 

Malawi               164  +/- 20 $1,806 +/- $218 $5,912 +/- $714 $9,196 +/- $1,111 $17,243 +/- $2,084 

Malaysia                   4  +/- 1 $43 +/- $6 $142 +/- $21 $220 +/- $33 $413 +/- $62 

Mongolia            3,943  +/- 538 $43,369 +/- $5,918 $141,936 +/- $19,368 $220,789 +/- $30,128 $413,979 +/- $56,490 

Morocco               220  +/- 30 $2,418 +/- $326 $7,915 +/- $1,067 $12,312 +/- $1,660 $23,085 +/- $3,112 
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Mozambique                 16  +/- 2 $177 +/- $23 $581 +/- $74 $903 +/- $115 $1,694 +/- $215 

Myanmar               134  +/- 17 $1,475 +/- $191 $4,826 +/- $626 $7,507 +/- $973 $14,075 +/- $1,825 

Nepal               592  +/- 84 $6,510 +/- $921 $21,305 +/- $3,015 $33,142 +/- $4,690 $62,140 +/- $8,794 

New Zealand               893  +/- 137 $9,819 +/- $1,507 $32,135 +/- $4,933 $49,988 +/- $7,673 $93,728 +/- $14,388 

Nigeria                 54  +/- 8 $590 +/- $84 $1,932 +/- $275 $3,006 +/- $427 $5,636 +/- $801 

Norway            3,981  +/- 790 $43,786 +/- $8,685 $143,301 +/- $28,424 $222,913 +/- $44,215 $417,962 +/- $82,904 

Pakistan            2,223  +/- 293 $24,457 +/- $3,227 $80,041 +/- $10,561 $124,508 +/- $16,428 $233,453 +/- $30,803 

PNG               150  +/- 24 $1,654 +/- $259 $5,412 +/- $848 $8,418 +/- $1,320 $15,784 +/- $2,474 

Peru            4,705  +/- 783 $51,759 +/- $8,611 $169,394 +/- $28,182 $263,502 +/- $43,839 $494,065 +/- $82,198 

Russ. Fed.           56,203  +/- 8,939 $618,237 +/- $98,333 $2,023,323 +/- $321,816 $3,147,391 +/- $500,602 $5,901,358 +/- $938,629 

Rwanda                 74  +/- 15 $813 +/- $167 $2,662 +/- $546 $4,140 +/- $849 $7,763 +/- $1,593 

South Africa               519  +/- 66 $5,709 +/- $731 $18,685 +/- $2,392 $29,065 +/- $3,721 $54,497 +/- $6,977 

Swaziland               119  +/- 17 $1,314 +/- $186 $4,302 +/- $608 $6,691 +/- $945 $12,546 +/- $1,773 

Sweden            4,955  +/- 728 $54,509 +/- $8,010 $178,392 +/- $26,215 $277,499 +/- $40,778 $520,311 +/- $76,459 

Tajikistan            1,132  +/- 150 $12,449 +/- $1,653 $40,743 +/- $5,409 $63,379 +/- $8,414 $118,835 +/- $15,777 

Tanzania               130  +/- 24 $1,425 +/- $260 $4,663 +/- $850 $7,254 +/- $1,323 $13,602 +/- $2,480 

Turkmenistan                   7  +/- 1 $77 +/- $11 $251 +/- $36 $390 +/- $56 $732 +/- $105 

Uganda                 76  +/- 15 $832 +/- $167 $2,723 +/- $545 $4,236 +/- $848 $7,942 +/- $1,589 

United States          44,478  +/- 6,072 $489,258 +/- $66,790 $1,601,209 +/- $218,586 $2,490,769 +/- $340,022 $4,670,192 +/- $637,541 

Venezuela               611  +/- 130 $6,724 +/- $1,434 $22,005 +/- $4,692 $34,231 +/- $7,298 $64,183 +/- $13,684 

Zambia                 16  +/- 2 $177 +/- $21 $579 +/- $70 $900 +/- $109 $1,688 +/- $204 

Zimbabwe               151  +/- 19 $1,660 +/- $213 $5,434 +/- $698 $8,453 +/- $1,085 $15,850 +/- $2,035 

 Totals        252,739  +/- 38,654 $2,780,132 +/- $425,192 $9,098,614 +/- $1,391,538 $14,153,399 +/- $2,164,615 $26,537,623 +/- $4,058,653 

 
The following countries have been omitted from the original dataset provided by Ward et al (2014) due to the absence of suitable spatial data: Austria, Bulgaria, Costa Rica, 

France, Germany, Italy, Poland, Romania, Spain, United Kingdom, Slovakia, Slovenia, Switzerland and Uzbekistan. 
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Perhaps more pragmatically, by placing a value on something, it can be argued that more informed 

and equitable public policy decisions can be made due to a better understanding of full costs and 

benefits (Costanza et al, 1997; Costanza et al, 2014; Daily, 1997; TEEB, 2013). Policy makers and 

industry need to make decisions all the time, and the economic premise is that every decision is 

underpinned by weighing the values among different alternatives (Bingham et al, 1995). In valuing 

natural capital and ecosystem services such as MGS, policy makers can be supported in: discovering 

areas of market failure; setting up markets to address these failures (e.g. for carbon), untangling 

uncertainty surrounding future natural resource use, designing innovative ecosystem conservation 

programs (e.g. payment for ecosystem services) and establishing robust natural capital accounts 

(TEEB, 2010). Moreover, placing a value on a natural capital stock and its ecosystem services can 

also serve to guide policy makers in making what are often tough trade-offs in our resource 

constrained world (Costanza et al, 2014).  

TEEB (2010) concluded that “natural resources are economic assets, whether or not they enter the 

marketplace” and that “conventional measures of national economic performance and wealth…. fail 

to reflect natural capital stocks of flows of ecosystem services contributing to the economic visibility 

of nature” (p.26). In this sense, valuation studies are critical to the long-term sustainable management 

of MGS and other ecosystems. Likewise, valuation studies have been instrumental in raising 

awareness of the world’s natural capital compared to the world’s gross economic output, such as in 

Costanza et al’s landmark study in 1997, and the many thousands of studies that have been spurred 

by it. Conversely, we acknowledge that there are important ethical and altruistic reasons to conserve 

MGS carbon ecosystems, and both moral and intrinsic issues arising from putting a price on what 

many consider priceless values (McCauley, 2006). 

 

5.15 Conclusion 

Here we have presented the first global economic valuation of C stored in MGS, filling critical gaps 

in knowledge about MGS ecosystems (Gurung et al, 2010; Jansky, 2002). Our principle aim was to 

determine the economic significance of these C stocks, and in so doing, contribute to enhanced public 

policy formation and setting future research directions. For example, the estimate made here provides 

a more robust global measure of MGS C stocks and CO2 fixes compared to what is currently available, 

which is critical in tracking progress towards the emissions reduction targets set out by the Paris 

Agreement. Importantly, although the majority of MGS are located in remote and inhospitable areas, 
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if managed more sustainably, these ecoregions could help avoid climate-induced damage to our 

society by between US$0.09billion and US$49 billion per annum. By the same token this is the 

estimated social cost of carbon that is being borne globally year-on-year. By estimating the relative 

value of carbon stored by MGS, we are attempting to make “the values of nature visible and 

accountable for in economic decision making” (Akerman and Peltola, 2012 p.1). Our results provide 

pointed information for national government as to which MGS ecoregions are under the greatest stress 

from LULUC. Lastly, our results also support the business case for developing the required methods, 

modalities, legal frameworks and institutions if climate finance is to be used to incentivise the 

sustainable management of MGS in the future (Ward et al, 2015).                   

   

5.16 Supplementary materials 

 

5.16.1 Submodels 

Net Primary Productivity (NPP) 

The standard three equations of the Miami Model is provided below.  

𝑵𝑷𝑷𝑻 =
𝟑𝟎𝟎𝟎

𝟏+𝒆𝟏.𝟑𝟏𝟓−𝟎.𝟏𝟏𝟗𝑻     (1) 

𝑵𝑷𝑷𝑷 = 𝟑𝟎𝟎𝟎 (𝟏 − 𝒆−𝟎.𝟎𝟎𝟎𝟔𝟔𝟒𝑷)  (2) 

𝑵𝑷𝑷 = 𝐦𝐢𝐧 (𝑵𝑷𝑷𝑻,𝑵𝑷𝑷𝑷)   (3) 

Where  

NPPT and NPPP represent NPP as functions of mean annual 

temperature T (ºC) and average annual precipitation P (mm) (Equations 

1 and 2),  

Equation 3 selects the minimum of NPPT and NPPP which provides a 

measure of NPP in gDM/m2/year/ºC and g(DM)/m2/year/(mm/year) 

respectively.   

 

Our enhanced method for predicting NPP in MGS ecoregions is given by the following equation: 

𝑵𝑷𝑷𝑴𝑮𝑺 = 𝑺𝑭 ×  𝐦𝐢𝐧(𝑵𝑷𝑷𝑻,𝑵𝑷𝑷𝑷) ×  𝑷𝑳 (𝑺𝑻 × 𝑪𝑶𝟐𝑹𝒆𝒔𝒑 ×  
𝒑−𝒑𝟎

𝒑𝟎
) − 𝒏𝒑𝒑𝑪𝒑𝒐𝒑,𝒍𝒊𝒗,𝒉𝒗𝒔  × 𝟎. 𝟎𝟏 × 𝒂𝒓𝒆𝒂𝑯𝒂   
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Where  

NPPMGS is the net NPP for the given month, 

SF is the ‘snowless fraction’ (%) of the ecoregion, 

PL is the ‘plant lifespan’ (years) of MGS vegetation, 

ST is the ‘scale translation’ factor,  

CO2Resp is the ‘CO2 response coefficient’,  

p and p0 is the atmospheric concentration of CO2 (ppm) at the start (year 2000) and 

end of the simulation (year 2015) respectively,  

nppCpop,liv,hvs is the biomass consumed by the local population (for energy), livestock 

and crop harvest respectively,  

areaHa is the total area of the ecoregion (hectares).          

 

The snowless fraction for each ecoregion is spatially derived from NASA (2006). Plant life is 

assumed to be 1 year (Grace et al, 2006). The inclusion of changes in atmospheric CO2 is important 

because NPP is a function of both climate and CO2 concentration (King et al, 1997). The CO2 

response coefficient also known as the biotic growth factor (Bacastow and Keeling, 1973), refers to 

the leaf photosynthesis response, and is a key factor in determining NPP (Polglase and Wang, 1999). 

King et al, 1997 suggest that a scaling translation factor of 0.6 be applied to the CO2 response 

coefficient in order to apply it at a global simulation level, rather than at an ecosystem level, for which 

it has not been verified (Grace et al, 2006). The formula for calculating the CO2 response coefficient 

is provided in Equation 4.      

 

𝑪𝑶𝟐𝑹𝒆𝒔𝒑 =
𝟑𝜷𝑪𝑶𝟐𝑪𝒐𝒎𝒑 

(𝜷−𝑪𝑶𝟐𝑪𝒐𝒎𝒑 )(𝜷−𝟐𝑪𝑶𝟐𝑪𝒐𝒎𝒑 )
                (4) 

Where  

Β is the intercellular CO2 concentration, and CO2Comp is the CO2 

compensation point. 
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The intercellular CO2 concentration factor is assumed to be 0.7 and represents the proportion of CO2 

captured by the leaves of plants (Leegood, 2001; King et al, 1997). The CO2 compensation point’ 

(Equation 5) refers to the point at which the uptake of CO2 via photosynthesis is matched to the 

respiration of CO2 (Long and Bernacchi, 2003).   

 

𝑪𝑶𝟐𝑪𝒐𝒎𝒑 =  
𝟎.𝟓∗𝑪𝑶𝟐𝒑𝒑𝒓𝒆𝒔𝒔

𝑹𝒖𝒃𝒊𝒔𝒄𝒐𝑺
        (5) 

     

Where  

CO2ppress  is CO2 partial pressure and RubiscoS to ‘Rubisco’ (mmol mol-1).    
 

 

CO2 partial pressure is assumed to have a value of 0.36 for MGS which often exist at high altitude 

(Billings and Mooney, 1968; Körner et al, 2005). Rubisco (ribulose-1,5-bisphosphate carboxylase-

oxygenase) is an enzyme which influences the first step of carbon fixation and here is considered to 

have a mid-range value of 100 mmol mol-1 for Carex Curvula, a typical alpine grass (Körner, 2013). 

Biomass consumed by livestock and for energy (e.g. cooking) by the local rural population is given 

by equations (6) and (7) below.      

 

𝒏𝒑𝒑𝑪𝒑𝒐𝒑 =   (𝒑𝒐𝒑𝑯𝒂 × 𝒂𝒓𝒆𝒂𝑯𝒂) × (𝟏 × 𝟑𝟔𝟓) ÷ 𝟏𝟎𝟎𝟎 ×  𝟎. 𝟎𝟖𝟑 (6)  

 

𝒏𝒑𝒑𝑪𝒍𝒊𝒗 =  
(𝑻𝑳𝑼𝒉𝒂 ×𝒂𝒓𝒆𝒂𝑯𝒂 ×𝟒.𝟔)

𝟏𝟐
      (7) 

 

Where  

nppC(pop) is the biomass consumed by the local rural population within 

the ecoregion,  

nppC(liv) is the biomass consumed by livestock for any given month, 

areaHa is the size of the concerned ecoregion,  

TLUha corresponds to Tropical Livestock Units (TLU) equivalent per 

hectare.    

 

Energy consumed (i.e. fuelwood extraction) is assumed to equal 1kg of fuelwood per person per day 

(.03 tonnes/person per month) (Lambin, 1988; Stephenne and Lambin, 2001). TLU is a commonly 
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used conventional stock unit, with one TLU equal to either one horse, one cattle, five donkeys, 10 

sheep or 10 goats (Boudet, 1975; Pieri, 1989). Based on average dietary requirements, we assumed 

that one TLU consumes 4.6 tonnes of dry biomass per year (0.38 tonnes/TLU per month) (Behnke 

and Scoones, 1993; de Leeuw and Tothill, 1993; Le Houérou and Hoste, 1977).   

NPP lost to harvesting is governed by the Crop Harvest Frequency (CHF). CHF was based on national 

averages derived from Ray and Foley (2013). In the model we assume that when a crop harvest event 

takes place, all accumulated NPP (and carbon) for the proportion of the ecoregion under cropland 

land use is lost. Ray and Foley (2013) suggest that CHF varies substantially around the world, and in 

many countries can occur well below one cycle per year (CHF<1.0), and sometimes just once in two 

years (CHF<0,5). CHF is highly sensitive to temperature variations (common in mountains), thus we 

adopted the assumption that if monthly temperature fell below 10 degrees Celsius, CHF would be set 

to the minimum value of either the national average or ‘1’. The given formula for NPP lost to CHF 

is given below.  

 

𝒏𝒑𝒑𝑪𝒉𝒗𝒔  = 𝑵𝑷𝑷𝑨𝑪𝑪 × 𝑪𝑯𝑭 × 𝑪𝒓𝒐𝒑𝒇𝒓𝒂𝒄     (8)  

 𝑻𝒎𝒕𝒉  < 𝟏𝟎℃, 𝑪𝑯𝑭 = 𝐦𝐢𝐧 (𝟏, 𝑪𝑯𝑭𝒏𝒂𝒕)    (9) 

 𝑻𝒎𝒕𝒉  ≥ 𝟏𝟎℃, 𝑪𝑯𝑭 = 𝑪𝑯𝑭𝒏𝒂𝒕)      (10) 
 

 

Where  

NPPACC is accumulated NPP since model start,  

Cropfrac is the percentage of cropland for the ecoregion,  

Tmth is the temperature for a given month in the model, CHF is Crop 

Harvest Frequency (e.g. ‘1.0’ is once per year, ‘2.0’ is twice per year, ‘0.5’ 

is every two years), 

CHFnat is the national CHF average. 

 

 

Biomass C submodel 

Biomass C is given by the following formula.  
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𝝋 𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝑴𝑮𝑺  < 𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝒍𝒊𝒎 𝝑 𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝒉𝒂 =  𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝑨𝑮  +  𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑩𝑮 

  

𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝑨𝑮 =  (𝑵𝑷𝑷𝑴𝑮𝑺  × 𝟎. 𝟔 × 𝟎. 𝟓 × 𝒂𝒓𝒆𝒂𝑯𝒂)              (11) 

 

 

𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑪𝑩𝑮 =  (𝑵𝑷𝑷𝑴𝑮𝑺  × 𝟎. 𝟒 × 𝟎. 𝟓 × 𝒂𝒓𝒆𝒂𝑯𝒂)                                           (12) 

 

Where  

BiomassCAG is net accumulation (or loss) of aboveground biomass C, 

BiomassCBG is net accumulation of belowground biomass C (tC) for the 

given month and ecoregion.   

 

NPP is multiplied by 0.5 to convert it to dry biomass C, which is then apportioned to aboveground 

(leaf) and belowground (root) based on a ratio of 3:2 for grasslands as described by Grace et al (2006).  

 

Soil loss (USLE) 

USLE is given by the following equation.     

 

𝑨 = 𝑹 × 𝑲 × 𝑳𝑺 × 𝑪𝑷 × 𝑷 

 

Where  

A is annual soil loss (t ha-1 y-1),  

R is rainfall erositivity (MJ mm h-1 ha-1 y-1),  

K is soil erodibility (t ha h MJ-1 mm-1),  

LS is the topographic factor,  

CP is the land cover protection factor,  

P is the erosion control factor.     

 

Each of the calculation components of RUSLE is detailed below. Rainfall erositivity (R) is first 

calculated as follows: 
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𝑹 = (𝟒. 𝟏𝟕 × 𝑴𝑭𝑰 − 𝟏𝟓𝟐) × 𝟏𝟕. 𝟎𝟐              (13) 

 

𝑴𝑭𝑰 =  
∑ 𝝆𝟐

𝑷
          (14) 

Where  

R is rainfall erositivity (t ha-1 y-1),  

MFI is the Modified Fournier Index,  

𝜌 2 is monthly rainfall,  

P is annual rainfall for the respective ecoregion.   

 

Rainfall erositivity takes accounts for rainfall intensity and the kinetic energy of rain drops. The 

greater intensity and duration of a rain storm, the higher the erosion potential (Arnoldus, 1977; 

OMAFRA, 2015). The function is calculated using monthly WorldClim (Hijmans et al, 2005) spatial 

data for each respective region (Table 1).   

Soil erodibility (K) is then calculated as follows:   

 

 

𝑲𝒎𝒕𝒉 =  
𝟐.𝟏 ×𝟏𝟎−𝟒× (𝟏𝟐−𝑶𝑴)×𝑴𝟏.𝟏𝟒+𝟑.𝟐𝟓×(𝑺−𝟐)+𝟐.𝟓(𝑷−𝟑)

𝟕.𝟓𝟗×𝟏𝟎𝟎
 × 𝟎. 𝟎𝟖𝟑 × 𝒂𝒓𝒆𝒂𝑯𝒂   (15) 

 

Where  

Kmth is soil erodibility (t ha h MJ-1 mm-1) for the given month for the 

ecoregion concerned,  

OM is organic matter (%),  

M is given by (% silt + % very fine sand) x (100 - % clay),  

S is soil structure,  

P is soil permeability.  

 

Soil erodibility provides an indicative measure of the potential for soil particles to become detached 

and transported by rainfall and runoff (OMAFRA, 2015). Soil erodibility is highly impacted by 

organic matter (OM), soil structure and permeability (Bonifacio, 2013; FAO, 1978). OM values were 

derived for each ecoregion from the HWSD (Table 5). Soil structure and permeability were also 
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assigned a value (between 1 and 4, 1 and 6 respectively) based on the dominant FAO soil type for 

each ecoregion (Table 12), which is also spatially derived from the HWSD.  

The length-slope (LS) factor is then calculated. L is first calculated as follows:  

𝑳 =  (
𝝀

𝟐𝟐.𝟏
)

𝒎

        (16) 

 

Where  

L is the slope Length factor,  

λ is the horizontal plot length,  

𝑚 is a variable exponent calculated from the ratio of rill-to-interrill erosion 

which varies between 0.5 (slopes ≥ 5% ) and 0.2 (slopes < 1%).  

 

S is then calculated as follows: 

𝑺𝒍𝒐𝒑𝒆𝒈𝒓𝒂𝒅 ≤ 𝟎. 𝟎𝟗, 𝑺 = 𝟏𝟎. 𝟖 𝐬𝐢𝐧 𝜽 + 𝟎. 𝟎𝟑           (17) 

𝑺𝒍𝒐𝒑𝒆𝒈𝒓𝒂𝒅 > 𝟎. 𝟎𝟗, 𝑺 = 𝟏𝟔. 𝟖 𝐬𝐢𝐧 𝜽 − 𝟎. 𝟓𝟎           (18)   

Where 

Slopegrad is the average slope gradient for the ecoregion,  

𝑆 is the Slope factor,  

𝜃 is the average slope angle. 

 

Length (L) and Slope (S) factors represent the influence of slope length and slope steepness on erosion 

rates. Together, LS are commonly referred to as the topographic factor (FAO; 1978; OMAFRA, 

2015). Equations 14 and 15 were undertaken for each ecoregion using ArcGIS in accordance with the 

procedure and functions described by Pelton et al (2014). Broadly, this included: creating a 

depressionless Global Digital Elevation Model (GDEM); clipping the GDEM using the ‘flow 

direction’ tool against the geospatially referenced boundaries of all ecoregions; calculating flow 

accumulation using the ArcGIS  ‘flow accumulation’ tool; and finally, calculating average slope for 

the ecoregion using the ‘slope’ tool.      

Once R,K and LS values are calculated, USLE requires two final values to be factored in. First, the 

land cover protection (CP) factor, which provides a simple mathematical relationship of the impact 



 

 
   111 

 

of rainfall erosion under a particular cropping system versus the impact of erosion on bare ground 

(FAO, 1978). The factor represents the effectiveness of different land cover types in protecting soil 

from erosion (OMAFRA, 2015). Values range from 1 to 0, with 1 signifying the highest impact and 

lower numbers (for example 0.01) being observed for dense canopied forests. Here we adopt a CP 

factor value of 0.024 for natural MGS ecosystems, as described by Herbert et al (2008). Given that 

each ecoregion may also contain cropland and pasture, we also adopt CP factor values of 0.20 and 

0.003 respectively, applying each as a weighting against the relative proportion of land use which 

makes up each ecoregion e.g. 0.024 multiplied by 0.4 if the ecoregion contains 40% natural 

ecosystems, and 0.20 multiplied by 0.6 if the remainder of the ecosystem (60%) is cropland. Second, 

the erosion control factor (P), which is sometimes also called the ‘support practice factor’, represents 

the effect that land management practices (e.g. straight-row farming, cross-slope cultivation,  contour 

farming) have on minimising erosion. Here, due to the lack of spatially referenced land management 

data, we adopted a P factor value of 0.12 for all MGS ecoregions as described by Hebert et al (2008) 

for alpine vegetation, cultivation, grassland and shrubland.    

Exceeding an ecoregion’s carrying capacity, that is a situation where stock numbers cannot be 

supported without causing rangeland degradation, serves to heighten erosion and soil loss rates 

(Boudet, 1975; Stéphenne and Lambin, 2001). Though estimating rangeland degradation in this 

respect is complicated, our model attempts to account for whether or not each MGS ecoregion is 

being overgrazed, as per equation 19. This is important, as pastoralism is one of the key economic 

activities found in MGS worldwide (Körner et al, 2005). If the ecoregion is deemed to be overgrazed 

(OverG value of ≥ 0) then the USLE land cover protection factor is set to bare ground (0.0045), 

reflecting the absence of MGS vegetation to protect the soil from erosion. Carrying capacity (CC) is 

set to 1.25ha/TLU (Stéphenne and Lambin, 2001). 

 

𝑶𝒗𝒆𝒓𝑮 =
𝑻𝑳𝑼 × 𝒂𝒓𝒆𝒂𝑯𝒂(𝒂𝒓𝒆𝒂𝑯𝒂

𝑪𝑪⁄ )

𝒂𝒓𝒆𝒂𝑯𝒂
𝑪𝑪⁄

      (19) 

Where 

OverG is dimensionless and indicator of whether (≥ 0) or not the given 

ecoregion is being overgrazed (< 0), CC is the carrying capacity for the 

given ecoregion.  
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Soil C submodel  

Net accumulations (or loss) of SOC is thus given by the following formula.  

 

𝝋 𝑺𝑶𝑪𝑴𝑮𝑺  < 𝑺𝑶𝑪𝒍𝒊𝒎 𝝑 𝑺𝑶𝑪𝑴𝑮𝑺 =  𝑺𝑶𝑪𝑴𝑮𝑺 

 

𝑺𝑶𝑪𝑴𝑮𝑺 = ((𝑨 ×
𝑩𝑫

𝟏𝟎𝟎
 ×  

𝑶𝑪

𝟏𝟎𝟎
) + (𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝑴𝑮𝑺 × 𝟎. 𝟎𝟎𝟕)) × 𝒂𝒓𝒆𝒂𝑯𝒂  (20) 

Where 

SOCMGS is net accumulation (or loss) of SOC for the given month and 

ecoregion (tC),  

A is the annual soil loss (t ha-1 y-1),  

BD is soil bulk density (%),  

OC is soil organic content (%).        

 

Estimates for bulk density and organic content were spatially derived from the HWSD. We assumed 

that for each tonne of C accumulated in biomass, 0.007 would also accumulate in the soil (Ernst-

Detlef et al, 2001). To determine gains or losses, we also assumed that 100% of the SOC would be 

atomised and emitted to the atmosphere as CO2 (using a conversion factor of 3.67). Though 100% 

may be considered to be an extreme assumption (Pendleton et al, 2012), it should be acknowledged 

that given the inherently steep slopes found in many MGS areas, the probability that disturbed SOC 

material is reburied is considered to be relatively low.       
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5.16.2 Summary of model input parameters and dynamic variables 

Table 10. Model input parameters  
Ecoregion Input Parameter Description Notation Dimension 

MGS Ecoregion Name e.g. “Southern Andean Steppe” EcoName dimensionless 

Country in which Ecoregion is located e.g. “Australia” CountryName dimensionless 

Land area areaHa ha 

Initial dominant land use, as at 1 Jan 2000 e.g. “Natural” initialLUState  dimensionless 

Percent of land area in natural state percNatural % 

Percent of land area under cropping percCrop % 

Percent of land area under grazing (pasture) percPast % 

Dominant protected area status e.g. “Protected” protectedAreaStatus  dimensionless 

Avg. tonnes soil  C per hectare  soiltCha tCha-1 

Max. tonnes SOC per hectare (steady-state limit) soilChaLimit tCha-1 

Avg. tonnes biomass C per hectare biomasstCha tCha-1 

Max. tonnes biomass C per hectare (‘steady-state limit’) biomassChaLimit tCha-1 

Avg. soil bulk density soilBulkDen % 

Dominant soil type e.g. “Histosols” soilType dimensionless 

Avg. soil organic content  soilOC % 

Avg. rainfall erosivity (USLE ‘R’ factor) R MJ mm h-1 ha-1 y-1 

Avg. soil erodibility (USLE ‘K’ factor)  erosion t ha h MJ-1 mm-1 

Avg. soil permeability (USLE ‘K’ factor) erosion dimensionless 

Avg. soil structure (USLE K factor) erosionS dimensionless 

Avg. protection (landcover) factor (USLE ‘P’ factor) erosionProFac dimensionless 

Crop harvest frequency CHF dimensionless 

Avg. Tropical Lifestock Units (TLU) per hectare   tluHa TLU 

Avg. number of people per hectare (rural population) popHa people 

Road within 1km of Ecoregion boundary,e.g.“Yes” RoadWithin1km text 

Avg. monthly temperature tempJan, tempFeb, … degrees C 

Avg. monthly rainfall  rainJan, rainFeb, … millimetres 

Avg. snowfall coverage  snowJan, snowFeb… % 

Avg. annual rainfall  rainAnn millimetres 

Modified Fournier Index MFI millimetres 

Topographic factor (USLE ‘LS’ factor) LS dimensionless 

Avg. annual change in crop land for country   CropTrend dimensionless 

Avg. annual change in grazing land for country   PastTrend dimensionless 

Avg. annual change in protected area for country   ProTrend dimensionless 

Avg. annual change in TLU for country   TLUtrend dimensionless 

Avg. annual change in rural population for country   POPtrend dimensionless 
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Table 11. Model dynamic variables 
Variable Description Notation Dimension 

Erosion cover protection factor (USLE ‘C’ factor) erosionCovFac dimensionless 

Crop Harvest Frequency for relevant country  CHFminTemp degrees C 

Mean min monthly temperature for year minTemp degrees C 

Mean monthly temperature at current model time currentTemp degrees C 

Mean monthly rainfall at current model time currentRain millimetres 

Mean monthly snow coverage at current model time curSnowFrac % 

Mean monthly snowless coverage at current model time snowlessFrac % 

Mean monthly rainfall at current model time NPPrain mm 

Mean monthly temperature at current model time NPPtemp degrees C 

Mean monthly NPP lost to grazing  NPPlossgrazing gDM 

Mean monthly NPP lost to energy use by local populations NPPlossEnergy gDM 

Mean monthly NPP lost to harvesting NPPlossHarvest gDM 

Net Primary Productivity NPP gDM 

CO2 response coefficient CO2respCoeff dimensionless 

CO2 partial pressure CO2partialPress mmHg 

CO2 compensation point CO2compPoint dimensionless 

RubiscoS (Ribulose-1,5-bisphosphate carboxylase-oxygenase RubiscoS mmol mol-1 

Mean monthly Soil Organic Carbon loss SoilCloss tC 

Mean monthly Soil Organic Carbon gain SoilCgain tC 

Annual Carbon to NPP ratio annCtoNPPratio dimensionless 

Overgrazing indicator  overG dimensionless 

Accumulated biomass C at current model time AccBiomassC tC 

Accumulated soil C at current model time AccSoilC tC 

Maximum biomass C that can accumulate for ecoregion maxCbioLim tCha-1 

Maximum soil C that can accumulate for ecoregion maxCsoilLim tCha-1 

Total ecosystem carbon (biomass C + SOC) EcoTotalC tC 

Total ecosystem carbon (biomass C + SOC) per hectare EcoTotalCha tCha-1 

Total CO2 sequestered by ecoregion  EcoTotalCO2e CO2 

Change in CO2 sequestered compared to model start time changeEcoTotalCO2e % 
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5.16.3 Soil permeability and structure   

 

Table 12. USLE Soil texture and permeability factors 

FAO Soil Type Permeability Structure 

Leptosols 1 3 

Regosols 2 2 

Solonetz 5 4 

Anthrosols 2 3 

Gypsisols 2 3 

Fluvisols 5 4 

Calcisols 2 2 

Chernozems 2 3 

Kastanozems 5 3 

Gleysols 5 2 

Cambisols 3 3 

Phaeozems 3 2 

Solonchaks 4 1 

Luvisols 2 3 

Podzols 5 4 

Podzoluvisols 5 4 

Histosols 6 4 

Arenosols 1 2 

Planosols 4 3 

Alisols 5 4 

Nitisols 2 3 

Vertisols 
4 4 

Andosols 2 3 

Acrisols 3 3 

Ferralsols 4 4 

Lixisols 2 2 

Values adopted using the World Reference Base for soil resources (IUSS Working Group, 2006).   

 

  



 

 
   116 

 

Chapter 6. Using carbon finance to support climate policy objectives in  

                  high mountain ecosystems 

6.0 Using carbon finance to support climate policy objectives in high mountain 

Ward, A. Dargusch. P. Grussu, G. and Romeo, R. 2015. Using carbon finance to support 

climate policy objectives in high mountain ecosystems. Climate Policy, 6:1-20. 

 

6.1 Chapter Summary 

This chapter investigates the stressors, challenges, and priorities related to the NRM of carbon stocks 

in mountain grasslands and shrublands; why carbon markets and climate finance have not yet been 

utilized in this context; and, what is required to position mountain-based NRM activities as eligible 

for carbon finance incentives. Using surveys and interviews triangulated with a systematic literature 

review, this chapter concludes that carbon finance incentives are not well understood, both amongst 

mountain-focused experts and in the literature. This chapter also highlights that the required technical 

methodologies, policy frameworks, and data to be largely undeveloped. This chapter concludes by  

article proposing a top-down conceptual policy framework that can be used to develop key ‘enabling 

factors’ with the view of extending the eligibility of carbon markets and climate finance to NRM 

activities undertaken in mountain grasslands and shrublands in the same way that has been afforded 

to other ecosystems. 

 

6.2 Introduction 

Mountain grassland and shrublands provide unique ecological functions and economic benefits to 

society. For instance, the high-altitude rangelands of the Hindu Kush Himalayan Region support 

major livestock production in Asia and in turn provide livelihood opportunities for impoverished local 

herdsman (Gao, Li, Xu, Wan, and Jiangcun, 2014), and the Páramo ecosystems of the Andes 

Mountains supply and regulate the hydrological flows critical for irrigation, industrial processes, 

power generation, and drinking water in the expanding regional and urban centres of Peru, Venezuela, 

Columbia, and Ecuador (Buytaert et al, 2006). Ward, Dargusch, Thomas, Lui, and Fulton (2014) 

estimate that montane, subalpine, and alpine grasslands and shrublands globally cover 9.38 million 

km2, or about 6% of the Earth’s terrestrial landmass. Without these ecosystems, the livelihoods and 
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survival of millions of people (many of whom are very poor) would be put at great risk (Körner et al, 

2005; Mountain Partnership, 2014). MGS are also important from a climate policy perspective, 

storing between 60.5 Pg and 82.8 Pg carbon worldwide (Ward et al, 2014), which is approximately 

the same amount as is stored in tropical peatlands (Page et al, 2011). 

However, these ecosystems are being degraded due to the influence of multiple anthropogenic 

stressors, ranging from the intensification of agriculture and mining to the growth in tourism, 

urbanization, exotic species, and – most notably – climate change (Ariza, Maselli and Kohler, 2013; 

Buytaert et al, 2006; Körner, 2004; Marquis, Baldassarri, Hofer, Romeo and Wolter, 2012). The 

damage leads to serious socio-economic consequences, including desertification, increased poverty, 

and more frequent conflict (Ariza et al, 2013; Körner et al, 2005). This degradation is also having a 

significant impact on carbon stocks. As is already the case for forests, lowland grasslands, and marine 

ecosystems (e.g. mangroves), reducing vegetation and carbon loss in mountain grassland and 

shrubland ecosystems must also feature in international climate policy discourse. 

The United Nation’s General Assembly recently reaffirmed (United Nations, 2013) its view that the 

‘management of mountain resources and socio-economic development of the people’ will best be 

achieved through better natural resource management (NRM) (UNCED, 1992, Ch. 13). However, a 

number of constraints exist. In particular, global socio-economic changes, coupled with 

disproportionate levels of poverty, have limited the capacity of developing-country governments to 

address unsustainable land management practices in mountain regions (Körner et al, 2005; Wehrli, 

2014). 

Industrialized countries also face challenges, such as the reintroduction of cattle into the Alpine 

National Park in Australia, where there is the potential to exacerbate existing and underfunded issues 

such as the spread of weeds, erosion, and damage to vegetation caused by feral horses (Worboys and 

Good, 2011). Although long-term financing is not the only requirement for a successful NRM project, 

it remains a critical component. Since the 1990s, NRM finance has declined in relative terms, 

meaning that NRM practitioners have ‘had to be more innovative and systematic in their search for 

financing options’ (WWF-MPO, 2003, p.7). 

This study focuses on five categories of MGS focused NRM activities that could potentially 

contribute to broader climate policy outcomes: (1) adaptive grazing management (e.g. rotation 

grazing and destocking); (2) sustainable cropping (e.g. fertilizer management); (3) ecosystem 

preservation (e.g. fencing-off of sensitive areas, environmental buffer zones, fire management, 
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avoided clearance); (4) ecosystem restoration (e.g. revegetation, exotic plant and animal control); and 

(5) engineered soil conservation measures (e.g. terracing). These five were chosen due to their 

common ability to influence the amount of carbon stored in such ecosystems and to provide other 

environmental, economic, and social benefits. 

In recent years there has been a marked increase in finance flowing to projects that reduce GHG 

emissions. In 2013, global climate finance (non-market incentives such as low-interest loans and 

private equity) was estimated to be worth US$331 billion (Buchner et al, 2014). In the same year, an 

estimated $31 billion in carbon offset units were traded on international carbon markets (Peters-

Stanley and Gonzalez, 2014; World Bank, 2014b). Although the majority of climate finance and 

carbon market transactions have centred on renewable energy, energy efficiency, and industrial 

efficiency projects, there has been a noticeable push by conservationists and natural resource 

managers to tap into these funds to support biological and land-based carbon offset projects (Booker, 

Huntsinger, Bartolome, Sayre, and Stewart, 2013; Buchner et al, 2014; Ullman, Bilbao-Bastida and 

Grimsditch, 2013). Notably, Nationally Appropriate Mitigation Actions (NAMAs) – strategic plans 

focused on large-scale emissions reductions in developing countries – are also growing in importance 

as a precursor to accessing climate finance, including from the UN’s Green Climate Fund 

(Wurtenberger, 2013). 

The objectives of this study are: (1) to revisit and consider the stressors, challenges, and priorities 

related to the NRM of MGS, as perceived by experts working in the area; (2) to develop an 

understanding as to why carbon markets and climate finance have not yet been utilized in this context; 

and (3) to provide a preliminary assessment of the barriers, opportunities, and ‘enabling factors’ that 

will probably be required to position mountain-based NRM activities as eligible for climate finance 

and carbon markets. This is the first study to explicitly highlight the important role that MGS might 

play in international climate policy. It is also the first to propose how international climate policy 

mechanisms might support much needed NRM activities in these areas, with the aim of setting the 

scene for future research and discussion. 

 

6.3 Materials and methods 

To meet these objectives a survey of experts was undertaken to obtain an insight into the priority 

NRM stressors for MGS, and to see how they judged their own understanding of carbon markets and 

climate finance. Follow-up interviews were used to gather more detailed data. This qualitative survey 
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method is indicative and not prescriptive, although it has credibility due to the expert input and 

triangulation methods used, as described below. The survey (Chapter 6.7, Table 15) was designed 

to identify the issues, priorities, and challenges facing natural resource managers and policy makers 

who are responsible for the NRM of MGS, and to provide an understanding of the extent to which 

these experts have considered using carbon markets and climate finance to support NRM. To achieve 

the first aim, the survey included the following types of qualitative question: what was the perceived 

trend in the health of these ecosystems; how experts rated different anthropogenic stressors; and the 

types of priority actions that are currently being used to manage these stressors, e.g. slope 

stabilization through revegetation. In achieving the second aim, the types of questions asked 

included: whether experts had considered the role of carbon markets and climate finance in 

supporting NRM activities; if experts understood the differences between carbon market (market) 

and climate finance (nonmarket) incentives, both before and after completing the survey; and what 

the barriers to developing carbon offset projects might be, e.g. technical capacity. 

The process for selecting an ‘expert panel’ of survey respondents was non-probabilistic and 

purposive, an approach deemed suitable for research where the objective is to understanding complex 

social phenomena (Marshall, 1996; Small, 2009) and where the sampling size is small but targeted 

(Gideon, 2012). Potential experts were initially identified through the Food and Agriculture 

Organisation (FAO) Mountain Partnership’s network of practitioners, as successful sampling 

requires ‘assembling a sample of persons with demonstrable expertise in given area’ (Gideon, 2012, 

p. 400). Experts were selected for the survey if publically available information confirmed they met 

the following five criteria: (1) currently working in a senior position (within a relevant government, 

non-government, or private-sector organization), or had done so up until five years ago; (2) had at 

least five years’ experience working exclusively on mountain resource management issues; (3) had 

published a relevant peer-reviewed journal article and/or policy paper for a reputable organization; 

(4) had obtained a qualification that was relevant to policy and/or NRM implementation in MGS; 

and, (5) when considered as part of the expert panel, represented a diverse geographical and/or policy 

perspective. The final panel consisted of 20 experts from a range of organizations, including the 

International Centre for Integrated Mountain Development (ICIMOD), the Consortium for 

Sustainable Development of the Andean Ecoregion (CONDESAN), the Peruvian Government, the 

Government of Bhutan, the Government of Afghanistan, the New Zealand Government, and the 

United Nations Development Programme. Their position titles included ‘Professor Emeritus’, 

‘Senior Policy Officer’, ‘Regional Coordinator’, ‘Chief Scientist’, and ‘Professor of Environmental 

Law’. More detail is presented in Figure 21. Experts came from either a policy formation (POL) or 
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on-the-ground NRM background, some working at the local scale and some at a larger regional scale 

(as represented by the approximate ‘hectares’ shown for each expert). The authors deemed it 

necessary to cover a broad range of perspectives, given that successful utilization of carbon finance 

in the NRM context will require effective interaction between policy making and on-the-ground 

NRM implementation (Campbell and Sayer, 2003). The survey was voluntary, anonymous, and 

confidential, and was conducted using an online questionnaire tool. 

A number of survey questions (as indicated in Table 15) asked experts to either rank or rate variables 

in the system. Rating averages (e.g. Question 9) were obtained on a weighted basis and according to 

the following equation: 

 

 

where X is the weight of the answer choice and W is the response count for the answer choice. 

Ranking averages (e.g. Question 7) were obtained according to: 

 

 

where X is the weight of the ranked position and W is the response count for the answer choice. The 

results were methodologically triangulated through the use of interviews and a literature review to 

increase reliability (Gideon, 2012). Using theoretical sampling (Gideon, 2012), eight of the most 

experienced experts surveyed were selected and interviewed at length. These experts were asked to 

elaborate on their answers to the survey (the interviews were semi-structured and face-to-face) and 

also invited to provide additional comments. The interview process was used to discuss, verify, and 

better explain the survey results, such as the extent to which experts understood the differences 

between carbon markets and climate finance at the beginning and at the end of the survey. 
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Figure 21. Distribution and characteristics of experts surveyed by this study 

 
Notes: This figure shows: (1) the geographical area (mountain range, country) where each expert works; (2) the 

approximate size (in hectares) of the mountain grassland and shrubland area in which they work (as an approximate and 

relative measure of working scale among the experts surveyed); (3) whether they work predominantly at a natural 

resource management (NRM) or policy (POL) level; and (4) whether they are from a government, non-government, or 

research organization. Grey areas show the distribution of the world’s mountain ranges. Source: Ward et al, 2015.  

 

 

Finally, the objectives of the literature review were (1) to verify the survey results and interview 

discussion, (2) to understand the extent to which carbon markets and climate funds are currently 

being applied in the context of MGS; and (3) to highlight any knowledge gaps. The literature review 

was systematic and quantitative (Pickering and Byrne, 2014) and included examining secondary data 

sources (publically available databases and registries, government and non-government reports, and 

peer-reviewed journal articles) covering (1) sustainable mountain development strategies; (2) climate 

policy documents, existing and pending carbon offset methodologies and projects developed under 

the Clean Development Mechanism (CDM), Verified Carbon Standard (VCS), Gold Standard (GS), 

Climate Action Reserve (CAR), Plan Vivo and the Panda Standard; and (3) international climate 

change mitigation funds that were undersubscribed as of January 2015, and that could be used in 

supporting NRM activities in MGS. Funds focused only on climate change adaptation were not 

reviewed. Particular attention was paid to information that addressed the key issues identified in the 

survey results and interviews. The literature review was conducted using online databases including 

Summon, Science Direct, the Web of Science, EBSCO, and ProQuest. The primary keyword search 
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terms consisted of a combination of ‘mountain’, ‘montane’, ‘alpine’, ‘tundra’, ‘subalpine’, 

‘grasslands’, ‘shrublands’, ‘carbon’, ‘markets’, ‘funding’, ‘natural resource management’, ‘climate’, 

and ‘policy’. Secondary search terms included ‘climate change’, ‘biomass’, ‘soil’, ‘ecosystem 

services’, ‘environmental services’, and ‘ecological services’. Although the information generated 

by this study was sourced from the most recent literature and reputable, qualified and experienced 

professionals, the findings must be considered indicative. All in all, this study reviewed around 2000 

peer-reviewed journal articles, policy, and technical documents. 

 

6.4 Results 

6.4.1 Panel of expert survey 

Ecosystem characterization, perceived level of degradation, and protection status 

The majority of experts judged the mountain grassland and shrubland areas they managed as ‘close 

to major settlement, land use managed sometimes, and moderate to high degradation’ (Figure 22a). 

Only the experts from Australia and Yemen classified land as suffering from ‘minimal degradation’, 

with the other seven classifying land as suffering from either ‘moderate to high’ or ‘severe and 

widespread’ degradation. 

The majority of areas worked on by the experts were judged to be ‘poorly managed’ and ‘largely 

unprotected’, with ‘some’ protected areas (Figure 21). Experts from industrialized nations were most 

likely to report their area of interest as either ‘a protected area that is well managed’ or ‘an area with 

some protected areas that is well managed’. The most common level of protection reported by experts 

from developing nations was ‘areas with some protected areas that are poorly managed’. 

Ecosystem stressors 

Of the experts, 55% classified the trend in ecosystem health within their areas of interest as ‘relatively 

stable overall’, with 30% reporting it as ‘declining overall’ and the remaining 15% as ‘improving 

overall’ (Figure 22b). When taking into account the level of significance, the conversion of land to 

intensive grazing and the increasing prevalence of exotic plants were rated as the most significant 

stressors for these ecosystems. It is also worth noting here the differences in responses from 

industrialized and developing nations. Experts from industrialized nations tended to rate climate 

change and the increasing prevalence of exotic plant and animals as the most significant stressors, 

while those from developing nations generally rated the conversion of land to intensive agriculture 
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(cropping and grazing) as the most significant factor affecting ecosystem health, followed by the 

increasing incidence of minerals and metals extraction. 

Figure 22. Summary of survey results   

 
Notes: *Based on their experience and judgement, experts were asked to choose one or more options, or rank or rate all 

options based on the level of significance or level of priority (‘high’ through to ‘not applicable’). ^ The numbers shown 

here (and in the text) represent the ranking average or rating average based on the selection made by all experts. The 

higher the number the better. Source: Ward et al, 2015.  

 

 

Priority NRM actions and barriers 

Experts rated the establishment of protected areas, policing and preventing illegal activities, 

establishment of alternative livelihood programmes, slope stabilization, rangeland management, and 

catchment revegetation as priority direct and indirect NRM actions (Figure 22c). These priorities are 

compatible with the five NRM carbon mitigation activities identified above, particularly those 
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focused on ecosystem preservation. The priorities differ between developing and industrialized 

countries. In Australia and New Zealand, NRM priorities are the control of exotic plants and animals. 

In the US and Canada it is wildfire management. In most developing nations the NRM priorities are 

establishing protected areas, slope stabilization, followed by rangeland management and enforcement 

of illegal activities. 

In understanding the barriers to implementing NRM actions, the experts noted overwhelmingly that 

a lack of funding was identified as a ‘highly significant challenge’ (Figure 22c). Insufficient 

institutional capacity, community poverty, lack of technical skills and knowledge, and a lack of 

legislative frameworks were considered by experts as ‘significant challenges’. Experts indicated that 

the most significant challenges for industrialized nations were lack of funding and community 

opposition. For developing nations, the most significant challenges were access to funding, a lack of 

technical skills, institutional capacity and networks, and community poverty. These findings were 

backed up by the interviews and literature review. 

 

Understanding of carbon markets and climate finance 

Half of the experts surveyed indicated that they did not understand the difference between carbon 

markets and climate finance (Figure 22d). The significance of this is discussed later. Overall, the 

experts ranked the low carbon market price as the greatest barrier to participating in carbon markets. 

Other highly ranked barriers included the perceived risks associated with carbon markets, issues 

associated with ascertaining land tenure, a lack of technical skills, inadequate partnerships, and the 

absence of suitable carbon offset methodologies. Experts made the following comments during the 

interview stage: ‘the opportunities have not received enough attention’, ‘it is often difficult to obtain 

data’, and ‘there is a need for a major organization to lead and coordinate the whole project where 

small partner organizations can take part in’. For climate finance, the perceived barriers were very 

different. Experts indicated the most significant barrier to be a general lack of knowledge around 

climate finance. Experts commented in the interviews that ‘government leadership was missing in 

this area’, and that ‘politicians needed to be better informed of the opportunities associated with 

climate finance’. 

Finally, experts were asked whether they understood how NAMAs might support mountain NRM 

actions. According to GIZ (2012, p. 7) NAMAs are ‘an instrument within the global climate change 

architecture for implementing the necessary mitigation activities to keep the mean global temperature 
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rise due to anthropogenic emissions of greenhouse gases below 2 degrees C’. NAMAs range from 

project-based mitigation actions (e.g. soil management) to nationally strategic objectives (e.g. greater 

energy efficiency across a specific economic sector). NAMAs are developed according to country-

specific sustainable development priorities (e.g. peatland management in Indonesia) and are likely to 

form the basis for attracting climate mitigation finance in the future, especially from large multilateral 

financing mechanisms such as the Green Climate Fund. In general, there seemed to be a moderate 

understanding of NAMAs, with four out of 20 experts signalling that they were currently investigating 

the role they could play, and nine indicating that they understood what NAMAs were but had not yet 

investigated their role in mountain NRM. Three experts indicated that NAMAs would not be 

applicable, while the last four signalled that they did not understand what NAMAs were and/or how 

they might apply to NRM in MGS. 

 

6.4.2 Carbon offset methodologies and projects in mountain grasslands and shrublands 

The literature review of various carbon offset project registries (CDM, VCS and CAR) revealed that 

no carbon offset projects (e.g. revegetation, soil management) have been developed in mountain 

grassland or shrubland areas (Table 13). This is underscored, at least until recently, by a lack of the 

appropriate methodologies required to develop NRM-focused carbon offset projects under the major 

carbon offset standards. Only three suitable methodologies have been approved under the VCS, and 

a number of other potentially suitable methodologies being developed under the GS, Panda Standard, 

CAR, and the emerging Chinese Certified Emissions Reduction (CCER) scheme. 
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Table 13. Mountain grasslands and shrublands: stocktake of relevant carbon offsets 

methodologies and projects (approved and under development)  

 
Source: Ward et al, 2015.  

 

These methodologies could potentially support adapted grazing management, sustainable cropping, 

ecosystem preservation, and ecosystem restoration. However, the stage of development for many 

remains uncertain, particularly for those methodologies being developed under the Panda Standard 

where the last official update was provided in 2011 (Panda Standard Association, 2011). A grassland 

management methodology is set to be released the CAR in mid-2015, although there are still many 

details to be finalized (Climate Action Reserve, 2015). There is also uncertainty as to the suitability 

of these methodologies for mountain grassland and shrubland landscapes rather than lowland 

landscapes, where there is a risk that important geomorphic differences that influence CO2 emissions, 

such as erosion rates which Hurni (1999) states are five to ten times greater in mountainous areas), 

are not recognized. Although there are several methodologies that could currently be used to generate 

credible carbon offsets, no carbon offset projects have been developed in MGS ecosystems. Critically, 

the VCS and CAR may be applied in both industrialized and developing countries, whereas the other 

schemes may only be applied in developing countries. The opportunity to develop carbon offset 

projects in industrialized countries is thus limited to methodologies approved under the VCS and 
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CAR. Also, because many mountain areas are already protected, any carbon abatement would not be 

considered ‘additional’ under the eligibility rules for these schemes. 

 

6.4.3 Climate finance for mountain grasslands and shrublands 

There are a number of climate mitigation funding mechanisms that could be used to support NRM 

activities in mountain grassland and shrubland areas (Table 14). Incentive types vary from co-

financing payments to grants, concessional loans, and non-financial technical assistance measures. 

For example, the Global Environment Facility (GEF) disbursed around US$300 million during 2010 

(Buchner et al, 2014) in grants, while the World Bank’s innovative Green Bond Programme has raised 

over US$6.4 billion through the issuance of AAA rated ‘Green Bonds’ that support eligible climate 

mitigation and adaptation projects while providing a commercial return to investors (World Bank, 

2014a). It should be noted that climate finance mechanisms generally apply to developing countries 

only, another limiting factor for industrialized countries.  
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Table 14. Mountain grasslands and shrublands: examples of relevant climate mitigation funds 

 
Source: Ward et al, 2015.  

 

While this list provides a snapshot of potential funds that could support the aforementioned NRM 

activities, studies suggest that the actual transacted value of climate finance is difficult to quantify 

and is likely to be much larger (Stadelmann, Axel and Timmons Roberts, 2013). For example, this 

list excludes financing opportunities that are privately negotiated and that are not currently open for 

application. As such, this list represents just a fraction of the US$331 billion per annum estimated by 

Buchner et al (2014). Nevertheless, it conservatively highlights a substantial opportunity to leverage 

climate finance to support NRM activities in MGS, particularly for those areas in developing 

countries. 
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6.5 Discussion  

6.5.1 The NRM context 

The results emphasize many of the same stressors, NRM priorities, and barriers identified by other 

studies (ICIMOD, 2013; Odermatt, 2004; Price, 2007; Price and Kim, 1999; Worboys and Good, 

2011). The literature review revealed that many of the stressors identified by the expert panel have 

the potential to cause both significant and negative impacts on carbon stocks (Gao et al, 2014; 

Landcare Research, 2012; Li, Li, Singh, Rengel and Zhan, 2007; Wangchuk, Gyaltshen, Yonten, 

Nirola and Tshering, 2013; Ward et al, 2014). 

The failure to address these stressors could have a significant effect on biomass and soil organic 

carbon stored in MGS. Depending on geographical location, slope, rainfall, vegetation, soil type and 

depth, mountain grassland and shrubland ecosystems are estimated to contain between 15 and 685 

tonnes of carbon per hectare (t C ha-1),most of which is typically contained within the soil (Ward et 

al, 2014). This carbon is largely unaccounted for in international carbon budgets (Ward et al, 2014), 

and its loss into the atmosphere would undermine the ultimate climate policy objective of the United 

Nations Framework Convention on Climate Change (UNFCCC), which is ‘to stabilize greenhouse 

gas concentrations in the atmosphere at a level that would prevent and reduce dangerous human-

induced interference with the climate system’ (UNFCCC, 2013). This study suggests that adaptive 

grazing management, sustainable cropping, ecosystem preservation and restoration, and engineering 

soil conservation could play an important NRM role in addressing these stressors. Moreover, because 

these activities can achieve carbon mitigation outcomes they are likely to be eligible for climate 

finance and carbon markets. However, the question remains as to why this has not happened. 

 

6.5.2 Risks, barriers, and challenges in using carbon markets and climate finance 

Almost half of the experts surveyed here were not aware of the difference between climate finance 

and carbon markets. It is an important distinction to make. Carbon markets generally relate to the 

development carbon offset projects (e.g. planting trees), which create tradable credits. These credits 

can be sold to organizations who either have a regulatory obligation to reduce emissions (e.g. under 

the EU-Emissions Trading Scheme) or that want to voluntarily offset their emissions in response to 

stakeholder and sustainability concerns (Dargusch and Thomas, 2012). On the other hand, climate 

finance refers to unilateral, bilateral, multilateral, and private-sector funding schemes, which provide 

upfront grants, subsidies, and low-interest loans (for example) to eligible countries to develop projects 
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or sectoral activities that reduce emissions e.g. the Green Climate Fund (Stadelmann et al, 2013); i.e. 

there is no trading. 

Among the experts there was a better understanding of carbon markets than climate finance, although 

there was also a perception that carbon offset projects were a technically difficult and risky 

undertaking. As of January 2015, land-based NRM carbon offset projects represented just over 1% 

of all CDM projects (UNEP, 2015), none of which were undertaken in MGS. The poor representation 

of NRM carbon offset projects is due to numerous factors, including future carbon price uncertainty; 

access to capital; delayed returns on investment; high transaction costs; burden to prove financial and 

regulatory additionality; long-term permanence requirements of carbon stocks; risk-of-reversal 

associated with landholders clearing land in the future; lack of institutional and skills capacity; 

absence of suitable methodologies; the risk of emissions occurring in another location, i.e. carbon 

leakage; and unintended negative impacts such as those on local communities and biodiversity 

(Cacho, Lipper and Moss, 2013; Dargusch, Harrison and Thomas, 2010; Galik and Jackson, 2009; 

Thomas et al, 2013). 

The confusion that carbon markets and climate finance are ‘one-and-the-same’ could lead to the 

assumption that the risks of pursuing direct climate finance are of the same magnitude as for carbon 

markets, and thus equally unappealing development propositions. While both funding pathways seek 

to support the development of projects that reduce emissions and improve sustainable development 

outcomes, there are distinct differences. Unlike for carbon offset projects, the use of climate finance 

has no requirement to sell tradable credits, and therefore no market risk. That is not to say climate 

finance is risk-free, as risk-of-reversal and carbon leakage remain key issues. This confusion, 

combined with an absence of general knowledge (as per the questionnaire responses), provide one 

explanation as to why climate finance was not widely considered by experts. This study reinforces 

two recent investigations that found climate finance to be difficult to quantify, report, and track 

precisely (Stadelmann et al, 2013; Würtenberger, 2013). This suggests that similar misperceptions 

may also exist for experts working in other areas.  

Another barrier is the measurement and monitoring of soil organic carbon. Almost all carbon (on 

average 98.1 percent) in mountain grassland and shrubland ecosystems is contained within the soil 

(Ward et al, 2014). The successful application of carbon markets and climate finance depends heavily 

on accurate and cost-effective monitoring of changes in soil carbon stocks. Although precise soil 

measurement methodologies are well-established, high spatial variability presents a financial barrier 

to potential carbon mitigation project developers (i.e. detailed studies are cost prohibitive; Conant et 
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al, 2011). This challenge would be especially pronounced in mountains where a wide variety of soils 

can often be found over a relatively short distance and altitudinal gradient (Körner, 2003).  

A significant challenge is data. Currently, there are only a handful of empirical studies that have 

focused on the influence of anthropogenic stressors on mountain carbon stock dynamics. For 

example, Li et al (2007) showed that the unsustainable management of alpine pastureland in Western 

China reduces soil carbon significantly. Britton et al (2011) quantified substantial carbon stocks in 

wet oceanic alpine grasslands. Wangchuk et al (2013) demonstrated that prescribed burning is an 

effective tool in restoring degraded high-altitude shrub-dominated grasslands. Wang, Li,Wang, and 

Wu (2008) highlighted the influence of climate change and thawing permafrost on vegetation and 

soil carbon loss in the Qinghai Tibetan-Plateau. More data are needed if climate policy is to be 

robustly supported, and carbon market and climate finance opportunities are to be realized in 

accordance with vigorous measurement, reporting, and verification (MRV) requirements. Attracting 

research funding, however, may require greater efforts to get MGS on the political agenda, with a 

recommended initial focus on quantifying the climatic-economic benefits of these ecosystems at a 

broader geographical level. Unfortunately, existing studies are relatively limited in this respect and 

are mainly centred on forests and/or the European Alps (Grêt-Regamey, Walz, and Bebi, 2008; 

Körner, 2009; Odermatt, 2004). 

 

6.5.3 Opportunities 

Notwithstanding the aforementioned challenges, carbon offset projects offer considerable climate 

change mitigation and sustainable development opportunities, and under the right conditions present 

potentially attractive financial returns and enhanced socio-economic and environmental outcomes 

(Trumper et al, 2009). The Páramo of the Northern and Central Andes Mountains provides a good 

example. Threatened by agricultural intensification, overgrazing, and urbanization, the loss of 

Páramo has a significant negative impact on catchment hydrological function, biodiversity, and local 

communities (Buytaert et al, 2006). Moreover, its clearance also releases large volumes of CO2 into 

the atmosphere – between 877 and 1,758 tonnes of CO2e per hectare (tCO2e ha–1) (Hofstede, Segarra 

and Mena, 2003). 

Hypothetically, for every tonne of CO2e avoided (or sequestered), one carbon offset could be realized 

if the necessary methodologies, skills, data, and institutions were available. For example, and based 

on the tCO2e ha-1 estimates above, if the introduction of sustainable cropping practices on a potato 
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farm in the Central Andes reduced business-as-usual (BAU) emissions by 25%, the carbon offset 

yield would be between 219 and 439 carbon offset units per hectare. Assuming the net carbon offset 

price paid to the landholder is US$4.9 per unit (World Bank, 2014b), the financial return to the 

landholder would be between US$1,073 and US$2,151 per hectare. This revenue can be considered 

an incentive to fund technologies and practices that would otherwise be cost-prohibitive for the 

landholder. However, a key issue here is whether carbon markets can provide enough of an incentive 

to compensate landholders for land-use opportunity cost (Isenberg and Potvin, 2010). In this regard, 

carbon offset projects undertaken in mountain grassland and shrublands of high carbon density (such 

as the Páramo) are more likely to overcome the land-use opportunity cost hurdles facing projects 

developed in areas where the carbon density per hectare is lower, such as the alpine meadows of the 

Rocky Mountains (Seastedt, 2001).  

Another consideration is the preference for NRM activities that sequester carbon (e.g. revegetation) 

versus those that avoid GHG emissions (e.g. avoided ecosystem clearance, such as REDD +). Carbon 

uptake rates in MGS are relatively small compared to other ecosystems (Körner, 2003), whereas 

existing carbon stocks are relatively large (Ward et al, 2014). In the current carbon market it would 

only be financially viable to focus on NRM activities that avoid emissions in areas where carbon 

density stocks are relatively high, such as the Páramo. However, carbon prices are forecast to increase 

in the medium to long term, as demand increases with the introduction of new emissions trading 

schemes (e.g. in China) and as emissions caps are tightened under existing climate policies e.g. the 

EU Emissions Trading Scheme (Newell, Pizer and Raimi, 2014; World Bank, 2014b). Until this 

occurs there are better prospects of tapping into ‘boutique’ carbon markets where companies may 

voluntarily pay a price premium for carbon offsets that are corporate social responsibility goals. 

Biosequestration projects are highly valued in this regard and have in recent times yielded an average 

payment of US$4.9 per unit (World Bank, 2014b). It is also important to point out that the demand 

for CO2 removal measures (i.e. biosequestration carbon offset projects that have a net reduction 

impact) is likely to become more urgent if we are to meet the Intergovernmental Panel on Climate 

Change (IPCC)’s minimum safe emissions reduction targets (Benson, 2014).  

This study recommends a focus be put on the establishment of NAMAs as a way to strategically 

position developing countries to capture a proportion of climate finance investment flows. As 

discussed, NAMAs are generally large-scale emission reduction strategies that are important as a 

basis for accessing climate finance. According to the Würtenberger (2013), NAMAs that are attractive 

to donors will need to be cost-effective, strategically appropriate to the country, and have a long-term 
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impact. Examples of NAMAs related to MGS might include, ‘Grassland management strategy for the 

Qinghai-Tibetan Plateau’ or ‘Sustainable agriculture management in the Páramo ecosystems of 

Ecuador’.  

 

6.6   Conclusions and recommendations on a carbon finance policy framework 

In this study, experts agreed that anthropogenic stressors are having an increasing impact MGS, 

predominantly in developing countries where formal protection is minimal. It was also found that the 

NRM actions required to deal with these stressors are widely underfunded. While it is important to 

seek recognition through the intergovernmental process (e.g. the inclusion of mountain-based metrics 

in the Sustainable Development Goals framework) policy makers should also consider existing 

mechanisms that could directly or indirectly help meet the same objectives. 

Although the opportunity is limited for industrialized countries, climate finance represents a resource 

that could potentially help achieve this. In the medium to long term, a higher carbon market price 

may also provide an adequate incentive to discourage unsustainable land-use and land use change. 

Although there are many barriers to leveraging carbon incentives for NRM, progress is being made. 

Suitable methodologies have been approved and are also being developed under the Gold Standard, 

the Verified Carbon Standard, and the Chinese Certified Emissions Reduction scheme. Robust and 

cost-effective in situ methods (e.g. soil spectroscopy) for measuring soil carbon are also emerging, 

helping to reduce the barriers associated with conventional laboratory-based methods (Gehl and Rice, 

2007). Valuable lessons can also be taken from the extensive studies and projects being undertaken 

on REDD+, including the determination of the systemic drivers for ecosystem degradation, 

establishing measurement, reporting, and verification frameworks, implementing pilot projects, 

determining land tenure, addressing technical skills shortages and the lack of institutional capacity 

and data availability.  

Despite this progress there are still many barriers to using carbon finance to support NRM in MGS. 

This study therefore recommends a systematic top-down approach be considered to address 

knowledge gaps and investigate innovative ways in which these mechanisms can be applied across 

MGS. This approach could consist of a collaboration of suitable organizations such as the Food and 

Agriculture Organisation, the Mountain Research Initiative, the International Centre for Integrated 
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Mountain Development, and the Consortium for Sustainable Development of the Andean Ecoregion. 

Figure 23 provides a top-down conceptual policy framework on how this might be achieved. 

Central to this policy framework are five ‘enabling factors’ that would be needed to access climate 

finance and carbon markets for the NRM of MGS. Broadly, these consist of (1) policy, legislation, 

and institutions; (2) knowledge, tools, and networks; (3) communication and training; (4) a climate 

finance fund specific to mountains; and (5) successful demonstration projects. The first three factors 

focus on developing accurate measurements of MGS carbon into international climate policy, 

building technical skills, data and knowledge, and institutional capacity. Adapted Grazing 

Management, Sustainable Cropping, Ecosystem Preservation, Ecosystem Restoration, and 

Engineered Soil Conservation represent activities that are likely to achieve the duel objectives of 

climate mitigation and sustainable land-use. Demonstration projects should be developed to show 

stakeholders that these NRM actions can be successfully implemented in MGS, and to gain important 

economic, social and technical experience and data. It would also be important to assess the potential 

of these NRM activities in addressing the major stressors highlighted by the experts in this study. 

The proposed Mountain Climate Fund would focus on channelling mitigation and adaptation finance 

to NRM activities. The fund could be created as a stand-alone mechanism or be designed to support 

existing funding mechanisms. Importantly, although the fund could seek new climate finance, it 

would be preferable to seek to aggregate existing climate finance pools based on a tailored set of 

criteria and MRV requirements established in collaboration with major donor organizations such as 

the World Bank or Global Environment Facility. Criteria could include (for example): the marginal 

cost of abatement (US$ per tCO2e mitigated); compatibility with Nationally Appropriate Mitigation 

Actions; measurable social and environmental co-benefits, towards Sustainable Development Goals; 

scalability; and trans-boundary replication. The advantages of such a fund would lie in utilizing 

existing mountain-focused knowledge, skills, and institutions to disperse aggregated funds to areas 

where the greatest sustainable development outcomes could be gained. Spatial targeting using GIS 

could also play an important role here (Lin, Sills, and Cheshire, 2013). Ultimately, the aim would be 

to facilitate greater participation by simplifying many of the technical requirements that would 

otherwise be a barrier to using carbon finance, particularly within mountain communities, which may 

often lack technical knowledge and capacity (Körner et al, 2005). 
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Figure 23. Distribution top-down conceptual policy framework for enabling the usage of 

carbon markets and climate finance for mountain grasslands and shrublands 

 
 

By putting in place these enabling factors, a new – and much needed – line of finance could be made 

available, forming part of the solution to the lack of funding for mountain NRM. Although this will 

be a challenge, the reasons to do so are compelling. There is an opportunity to leverage carbon 

markets and climate finance to support conservation, improve ecosystem services, and alleviate 

poverty through investment in NRM projects in MGS – much in the same way that has been done for 

forests and marine ecosystems. Such actions would also contribute towards the mitigation of climate 

change and towards international climate policy objectives. Accessing climate finance should not be 

the only motivation to act in this regard. As for other ecosystems, the carbon stored in MGS and 

shrublands needs to be considered as part of the ‘global carbon budget’. Failing to address degradation 

and loss in these areas will likely offset gains in other areas, ultimately serving to undermine progress 

towards climate mitigation goals. 
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6.7   Supplementary information 

    Table 15 – Survey Questions 
Question Options 

1) Please tell us about yourself 

and your work in the 

mountains: 

a. In what country do you currently live and work? 

b. On what mountain range (in the country you live) do you primarily work? 

c. What is the name/location of specific mountain area/watershed you work on? 

d. What is the approximate land area (hectares) of this mountain area/watershed? 

e. What is the approximate altitude range (m) of this mountain area? 

f. What proportion (%) of this mountain area is above treeline but below the permanent snowline? 

2) In what type of organisation 

do you work? (Choose one 

option)  

a. Government 

b. Non-government 

c. Research & education 

d. Other 

3) What is the nature of your 

work? (Choose one option)  

a. Natural resource management  

b. Policy making 

c. Research & education 

d. Economic assessment 

e. Modelling, technical or engineering 

f. Other 

4) How would you best describe 

the state of the mountain 

range which you work on? 

(Choose one option) 

a. Isolated, relatively pristine, untouched 

b. Isolated, landuse sustainably managed, minimal degradation  

c. Isolated, land use managed sometimes, moderate to high degradation 

d. Isolated, land use generally not managed, severe and widespread degradation 

e. Close to major human settlement, relatively pristine, untouched 

f. Close to major human settlement, land use sustainably managed, minimal degradation 

g. Close to major human settlement, land use managed sometimes, moderate to high degradation 

h. Close to major human settlement, land use generally not managed, severe and widespread degradation 

5) How would you best describe 

the general level of protection 

of this mountain range and its 

watersheds? 

a. A protected area that is well managed 

b. A protected area that is poorly managed 

c. An area with some protected areas that are well managed 

d. An area with some protected areas that are poorly managed 

e. An area that is largely unprotected but well managed 

f. An area that is largely unprotected and poorly managed 

6) What is the health of treeless 

alpine, subalpine and 

montane grassland and 

shrubland ecosystems located 

within the mountain range / 

country in which you work?  

a. Improving overall 

b. Improving, however some ecosystems stable 

c. Improving, however some ecosystems declining 

d. Relatively stable overall 

e. Relatively stable, however some ecosystems improving 

f. Relatively stable, however some ecosystems declining 

g. Declining overall 

h. Generally declining, however some ecosystems improving 

i. Generally declining, however some ecosystems stable 

7) With regards to treeless 

alpine, subalpine and 

montane grasslands and 

shrublands, please rank the 

following threats in order of 

most significant to least 

significance (with 1 being the 

most significant threat and 15 

being the least significant):  

a. Increasing frequency of wildfires 

b. Increasing intensity of wildfires 

c. Increasing number of introduced animal pests 

d. Increasing number of introduced plant pests 

e. Increasing conversion of land to intensive agriculture – grazing 

f. Increasing conversion of land to intensive agriculture – cropping 

g. Increasing incidence of metals and mineral extraction (mining) 

h. Increasing illegal removal of native plants 

i. Increasing tourist numbers in winter 

j. Increasing tourist numbers in summer 

k. Increasing infrastructure development (e.g. dams and roads) 

l. Increasing urban encroachment 

m. Increasing temperatures due to climate change 

n. Changing rainfall patterns due to climate change 

o. Other 

8) What types of activities are 

currently being used to 

manage the threats identified 

in Question 7? Check all that 

apply.  

a. Revegetation of catchment headwaters 

b. Slope stabilisation using engineered solutions 

c. Soil management (including fertiliser management) 

d. Rangeland management 

e. Fencing-off of streams from cattle and sheep 

f. Buffer areas for streams 
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g. Alternative livelihood programs 

h. Wildfire management 

i. Pest control (non-native plants) 

j. Pest control (non-native animals) 

k. Enforcement of illegal activities (e.g. firewood collection) 

l. Establishing protected areas 

 

9) What are the greatest 

challenges in managing high-

mountain ecosystems and 

upland watersheds in this 

mountain range? Please rate 

each challenge below in terms 

of its significance 

a. Lack of funding for management activities 

b. Lack of technical skills and/or knowledge  

c. Insufficient institutional capacity  

d. Community opposition  

e. Community poverty  

f. Legislative frameworks (or lack thereof)  

g. Remoteness and/or environmental conditions   

10) Through the preservation and 

enhancement of carbon stocks 

in treeless high-mountain 

ecosystems, carbon markets 

and carbon financing could 

play a role in supporting the 

sustainable management 

upland watershed areas. Do 

you agree? 

a. Yes, it is important that carbon markets & financing be considered as a source of funding 

b. Possibly, but carbon markets and carbon finance is very complex to understand and potentially risky 

c. No, it is too complex and too risky for my organisation to consider 

d. I do not understand how carbon markets & financing could apply 

 

11) Do you understand the 

difference between carbon 

markets and climate finance?  

a. Yes 

b. No 

 

12) Please rate the following 

factors in the context of 

developing carbon offsets 

projects in your natural 

resource management area of 

responsibility (If you have not 

considered carbon offset 

projects before, please still 

answer this question while 

considering the potential 

factors)  

a. Lack of general knowledge and/or understanding about carbon offsets and carbon markets 

b. Lack of technical and/or operational capacity to develop carbon offset projects 

c. Inadequate partnerships and linkages required to develop carbon offset projects 

d. Lack of readily available carbon offset calculation methodologies 

e. Absence of required government institutions 

f. Absence of required legislation and/or regulations 

g. Inaccessibility to capital finance to kick-start the project 

h. Difficulties in establishing land tenure/ownership 

i. Community opposition 

j. Perceived risks associated with carbon markets 

k. The low market price of carbon  

l. There is no real opportunity to develop a carbon offset project in the area  

m. Unsure of the types of carbon offset projects that could be implemented           

13) What is the main reason why 

you have not considered 

'climate finance' to support 

natural resource management 

activities in your mountain 

grassland and shrubland 

area? 

a. Lack of general knowledge on climate finance and how it works 

b. Lack of specific information on what climate finance funds we could apply for 

c. Lack of technical capacity in meeting application requirements for climate finance 

d. Lack of institutional capacity in meeting application requirements for climate finance 

e. Lack of legislative/regulatory frameworks in meeting application requirements for climate finance 

f. There are no suitable climate finance funds for the area that I work in 

g. I did not know there was a difference between carbon markets and climate finance 

h. I have not heard of climate finance 

14) Now that you have completed 

this survey, do you 

understand the difference 

between carbon markets and 

climate finance? 

a. Yes 

b. No, I still don’t know the difference 

c. Not applicable 

15) With regards to climate 

finance, do you understand 

the role that Nationally 

Appropriate Mitigation 

Actions (NAMAs) and 

National Adaptation 

Programmes of Action 

(NAPAs) could play in 

reducing emissions, adapting 

to climate change, achieving 

natural resource management 

and sustainability outcomes in 

the area/s where you work?  

a. Yes, we are currently investigating/have identified the specific role that NAMAs/NAPAs could play 

b. Yes, but we have NOT yet investigated the specific role that NAMAs/NAPAs could play 

c. No, NAMAs/NAPAs will have no role to play in the management of the area in which I work 

d. What are NAMAs and NAPAs? 

e. Not applicable 
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Chapter 7. Conclusion and recommendations   

7.0 Conclusion and recommendations 

While science has progressively shone light on the relative importance of forest, lowland grassland 

and marine ecosystems to climate mitigation, it has seemingly sidestepped the role that alpine, 

subalpine and montane grasslands and shrublands might play. As discussed, this is not surprising 

given the general lack of interdisciplinary knowledge and data for mountains. As stated, the overall 

aim of this thesis was to answer this question by providing both a biochemical and economic estimate 

of C stored in MGS areas, and propose how this C pool might be factored into international climate 

policy frameworks and budgets when also considering the opportunities for using climate finance to 

address NRM stressors.    

Chapter 2 of this thesis explored the environmental and socioeconomic factors relevant to this study. 

Although it did not contribute directly to the research questions, it provided context, aiding the reader 

in interpreting the results presented in Chapters 4, 5 and 6. Highlighting the biophysical factors 

influencing mountains, such as extreme climatic conditions, facilitates a better understanding as to 

why biomass C stocks are particularly low in MGS compared to forests. Likewise, looking at 

demographic factors such as poverty and illiteracy rates (which are more common at higher altitudes) 

helps one recognise the challenges that would accompany the on-ground application of climate 

finance in a MGS context. Furthermore, by knowing the evolution and current application of 

ecological economics and carbon markets we can get a better appreciation as to why this thesis is 

trying to estimate the value of climate regulation by MGS, and how and why this links with the use 

of climate finance to solve priority NRM issues. Importantly, this chapter highlighted the data and 

knowledge gaps that exist for C stored in MGS on a global scale.            

Chapter 4 established a baseline measure of C stored in mountain areas, thus filling the 

aforementioned research gap. Using spatial analysis, this thesis was the first to estimate there to be 

between 60.5 Pg C and 82.8 Pg of C contained within the biomass and soils of the world’s MGS. It 

then put these figures into perspective by comparing global C pools in tropical Savannas and 

grasslands, temperate forests and tropical peatlands as estimated by other studies to contain 326–330 

Pg C, 159–292 Pg C and 88.6 Pg C respectively. In making such a comparison this thesis did not set 

out to prove which ecosystem is superior with regards to C storage and thus importance to climate 

policy. Rather, it attempts to draw attention to MGS C as an important natural capital stock, that like 

other ecosystems, should be considered intrinsically invaluable, as part of the emerging green 
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economy and eventually given due regard in future climate policy decisions. With respect to this last 

point, Chapter 5 also found that MGS C stocks are not reliably accounted for in international carbon 

budgets. These findings thus answer Research Question 1 which asked “What is the spatial 

distribution and significance of carbon stored in the world’s MGS? How is it accounted for in global 

carbon budgets and international carbon accounting frameworks?”. 

Chapter 5 builds on Chapter 4 by modelling the impact of LULUC and the exchange of CO2 between 

MGS and the atmosphere. This chapter clarified, both in biochemical and economic terms, how 

LULUC impacts MGS C stocks. It put the first global economic estimate for MGS CO2 sequestration 

at between US$1.24 billion and US$11.8 billion per annum. It also pointed out that if land use was 

managed more sustainably, MGS ecosystems could sequester up to an additional 8.4 Mt CO2 per 

annum while contributing US$0.093 billion - US$0.89 billion annually in added economic value to 

society. When considered for its total in-situ C stock, this chapter estimated that MGS ecosystems 

contain at least 252 ± 39 gigatonnes CO2 (68 ± 11 petagrams C) as at 31 December 2015, with an 

equivalent ecological asset value of between US$2.5 (± 0.43) trillion and US$26.5 (± 4.1) trillion 

(2007 dollars). These figures represent the most comprehensive and up-to-date global biochemical 

and economic estimate provided for MGS C stores and associated CO2 fluxes. With respect to 

ecological economics and the green economy, these estimates could potentially fill gaps in other 

respected studies considering the relative economic contribution of ecosystem services worldwide 

e.g. Costanza et al, 2014. This chapter thus answers Research Question 2 which asked “To what 

extent is carbon globally exchanged between MGS and the atmosphere? How is this impacted by land 

use change? What is the non-tradable economic value of these exchanges when considering climate 

policy and broader sustainable perspectives?”.  

Noting the relatively significant C stocks found in MGS, and the associate economic value, Chapter 

6 investigated how climate finance might be used to support priority NRM actions and thus address 

LULUC derived stressors. In so doing, both C stocks and economic value can potential be enhanced, 

as is estimated in Chapter 5 under the sustainable land management simulation scenario. Notably, 

Chapter 6 also sought to uncover how experts understood the risks and opportunities of using climate 

change in this respect, and what methodologies, institutional arrangements and other enabling factors 

would be required to do so. Through the use of a survey, interviews and literature review the chapter 

concluded the priority anthropogenic stressors for MGS to be principally grazing and cropping 

intensification, and the proliferation of exotic plants. It also found the lack of NRM funding to be key 

constraint in dealing with these stressors, adding weight to the postulation that climate finance could 
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provide an innovative and valuable source of financial support. Importantly, the results of this chapter 

noted that around half of SMD focused experts surveyed did not have a firm grasp on the 

opportunities, risks and barriers to using climate finance to solve MGS stressors. It also established 

that the required climate finance measurement methodologies, policy frameworks and data to be 

largely undeveloped. The chapter concluded by proposing a top-down conceptual policy framework 

that can be used to develop key ‘enabling factors’ with the view of extending the eligibility of carbon 

markets and climate finance to NRM activities undertaken in MGS in the same way that has been 

afforded to other ecosystems. This chapter thus answers Research Question 3 which asked “What are 

the stressors, NRM challenges and priorities related to carbon stocks in MGS? Why has climate 

finance not been utilized in this context? What is required to position these NRM activities eligible 

for carbon finance incentives, and in so doing, ensuring that MGS are more sustainably used and the 

aforementioned economic value is maintained and/or improved?”. 

This thesis has the following implications for policy making. Firstly, the results provide a sound first-

step in developing (or improving) global environmental accounts for C stored in MGS ecoregions. 

As an environmental asset, these results provide an initial baseline estimate and methodology with 

which to monitor and manage C these C stocks. This baseline has direct application to improving the 

resolution of MGS carbon accounting modalities issued by the IPCC and UNFCCC, which as 

discussed in Chapter 4 are currently inadequate to reflect the unique biophysical characteristics of 

these ecosystems. Any improvement in this respect will also improve the reliability of the science 

and thus progress towards the targets set by the UNFCCC Paris Agreement. Second, from an 

accounting perspective, this thesis could potentially provide input data into other global studies (e.g. 

Costanza et al, 1997; Costanza et al, 2014) which have excluded estimates for C in alpine areas which 

until now has not been available. Third, when combined, the estimates for C stocks, CO2 sequestration 

and economic value provided herein justify further investigation of how carbon markets and climate 

finance might be used specifically to address anthropogenic stressors impacting MGS around the 

world. As noted, globally there is approximately US$390 billion in climate finance transacted 

annually. If just 0.1 percent of this amount could be set aside then this would open up around US$39 

billion of NRM funding for MGS every year. To put this figure in context, the Australian Alps alone 

contribute circa US$7.7 billion in direct economic benefits every year due to the provision of water 

to users in the Murray-Darling Basin (Worboys and Good, 2011). For only US$0.05 billion invested 

annually in priority NRM actions, most of the major stressors effecting this valuable natural capital 

stock could be managed effectively. Sadly, like for many mountain areas around the world, even this 

relatively small sum has not been funded by government.          
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We acknowledge that there are limitations to this study. Mostly, these related to temporal and spatial 

resolution of input data. As described in the relevant Materials and Methods sections of this thesis 

the best data available has been used, though much of it is based on mean values for a particular 

ecoregion which can be thousands of square metres in area. Specifically, the HWSD dataset 

underpinning our estimates for soil C are generally aggregated. However, this is a global study that 

is seeking to provide an initial and high-level estimate for international climate policy. The spatial 

resolution of the HWSD, GLC2000 and other datasets used by this study are therefore more than 

adequate to meet this requirement. It was not the intention of this thesis to provide empirical 

measurements or local scale estimates. The intention was for the global scale estimate provided to be 

used as a starting point to determine where best to do this. Moreover, the estimates provided here 

improve on existing proxy values and methodologies for lowland grasslands, such as those provided 

by the IPCC, providing a more specific reference point for upland MGS that better reflect the native 

biophysical conditions.           

This study sets the stage for future research, including in the following areas. First, the results could 

be used to support the selection of the most suitable MGS locations around the world for targeted 

and/or empirical research and trials. Second, the results could also be used to improve national and 

regional environmental accounts for MGS as required under UNFCCC and other mandatory and 

voluntary reporting regimes. Third, further development of the IBM (and underlying assumptions) 

presented in Chapter 5 could produce more reliable results, providing greater confidence when 

forecasting LULUCF trends in MGS. Four, a more detailed and specific MGS climate policy 

roadmap, such as that which has been completed for marine ecosystems (i.e. Blue Carbon Policy 

Framework 2.0 IUCN, 2012), would assist in resolving the many design, implementation and 

monitoring issues that exist for using climate finance in MGS. Finally, investigating the economics 

of carbon mitigation projects in MGS could help government and industry gain confidence in the 

financial and non-financial benefits that such projects could generate e.g. Siikamäki et al (2012). 

In conclusion, this thesis has estimated there to be substantial amounts of C stored in MGS around 

the world. It also found annual CO2 sequestration rates to be of global importance, both in biochemical 

and economic terms. It is hoped that policy makers can use the results of this thesis to build a business 

case for integrating MGS into international climate policy discourse, and ultimately establish 

mechanisms and modalities to enable the use of climate finance in the MGS context.  
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Appendix A – model dataset snapshot from ExcelTM 
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Appendix B - Screenshot of model in AnyLogicTM  

 

 


